Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
·
b5dea27
1
Parent(s):
a16cb0b
Include advanced options to modify guidance scale, seed
Browse files
app.py
CHANGED
@@ -82,7 +82,7 @@ def pgd_inpaint(X, target, model, criterion, eps=0.1, step_size=0.015, iters=40,
|
|
82 |
|
83 |
return X_adv
|
84 |
|
85 |
-
def process_image_img2img(raw_image,prompt):
|
86 |
resize = T.transforms.Resize(512)
|
87 |
center_crop = T.transforms.CenterCrop(512)
|
88 |
init_image = center_crop(resize(raw_image))
|
@@ -103,13 +103,13 @@ def process_image_img2img(raw_image,prompt):
|
|
103 |
adv_image = to_pil(adv_X[0]).convert("RGB")
|
104 |
|
105 |
# a good seed (uncomment the line below to generate new images)
|
106 |
-
SEED = 9222
|
107 |
# SEED = np.random.randint(low=0, high=10000)
|
108 |
|
109 |
# Play with these for improving generated image quality
|
110 |
STRENGTH = 0.5
|
111 |
-
GUIDANCE = 7.5
|
112 |
-
NUM_STEPS = 50
|
113 |
|
114 |
with torch.autocast('cuda'):
|
115 |
torch.manual_seed(SEED)
|
@@ -119,7 +119,7 @@ def process_image_img2img(raw_image,prompt):
|
|
119 |
|
120 |
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
121 |
|
122 |
-
def process_image_inpaint(raw_image,mask, prompt):
|
123 |
init_image = raw_image.convert('RGB').resize((512,512))
|
124 |
mask_image = mask.convert('RGB')
|
125 |
mask_image = ImageOps.invert(mask_image).resize((512,512))
|
@@ -156,7 +156,7 @@ def process_image_inpaint(raw_image,mask, prompt):
|
|
156 |
adv_image = recover_image(adv_image, init_image, mask_image, background=True)
|
157 |
|
158 |
# A good seed
|
159 |
-
SEED = 9209
|
160 |
|
161 |
# Uncomment the below to generated other images
|
162 |
# SEED = np.random.randint(low=0, high=100000)
|
@@ -165,8 +165,8 @@ def process_image_inpaint(raw_image,mask, prompt):
|
|
165 |
print(SEED)
|
166 |
|
167 |
#strength = 0.7
|
168 |
-
guidance_scale = 7.5
|
169 |
-
num_inference_steps = 100
|
170 |
|
171 |
image_nat = pipe_inpaint(prompt=prompt,
|
172 |
image=init_image,
|
@@ -192,7 +192,7 @@ def process_image_inpaint(raw_image,mask, prompt):
|
|
192 |
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
193 |
|
194 |
|
195 |
-
examples_list = [["dog.png", "dog under heavy rain and muddy ground real"]]
|
196 |
|
197 |
|
198 |
with gr.Blocks() as demo:
|
@@ -203,7 +203,7 @@ with gr.Blocks() as demo:
|
|
203 |
<p style="margin-bottom: 10px; font-size: 94%">This is an unofficial demo for Photoguard, which is an approach to safeguarding images against manipulation by ML-powered photo-editing models such as stable diffusion through immunization of images. The demo is based on the <a href='https://github.com/MadryLab/photoguard' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.</p>
|
204 |
''')
|
205 |
gr.HTML('''
|
206 |
-
<p align="center"><img src="https://raw.githubusercontent.com/MadryLab/photoguard/main/assets/hero_fig.PNG" style="width:
|
207 |
''')
|
208 |
gr.HTML('''
|
209 |
<p style="margin-bottom: 10px; font-size: 94%"> A malevolent actor might download
|
@@ -224,15 +224,20 @@ we disrupt their ability to successfully perform such edits forcing them to gene
|
|
224 |
mask_image_inpaint = gr.Image(type="pil", label = "Mask")
|
225 |
input_prompt_inpaint = gr.Textbox(label="Prompt")
|
226 |
run_btn_inpaint = gr.Button('Run')
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
228 |
with gr.Row():
|
229 |
result_gallery = gr.Gallery(
|
230 |
label="Generated images", show_label=False, elem_id="gallery"
|
231 |
).style(grid=[2], height="auto")
|
232 |
|
233 |
-
run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery])
|
234 |
-
examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img)
|
235 |
-
run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint], outputs = [result_gallery])
|
236 |
|
237 |
|
238 |
demo.launch(debug=True)
|
|
|
82 |
|
83 |
return X_adv
|
84 |
|
85 |
+
def process_image_img2img(raw_image,prompt, scale, num_steps, seed):
|
86 |
resize = T.transforms.Resize(512)
|
87 |
center_crop = T.transforms.CenterCrop(512)
|
88 |
init_image = center_crop(resize(raw_image))
|
|
|
103 |
adv_image = to_pil(adv_X[0]).convert("RGB")
|
104 |
|
105 |
# a good seed (uncomment the line below to generate new images)
|
106 |
+
SEED = seed# Default is 9222
|
107 |
# SEED = np.random.randint(low=0, high=10000)
|
108 |
|
109 |
# Play with these for improving generated image quality
|
110 |
STRENGTH = 0.5
|
111 |
+
GUIDANCE = scale # Default is 7.5
|
112 |
+
NUM_STEPS = num_steps # Default is 50
|
113 |
|
114 |
with torch.autocast('cuda'):
|
115 |
torch.manual_seed(SEED)
|
|
|
119 |
|
120 |
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
121 |
|
122 |
+
def process_image_inpaint(raw_image,mask, prompt,scale, num_steps, seed):
|
123 |
init_image = raw_image.convert('RGB').resize((512,512))
|
124 |
mask_image = mask.convert('RGB')
|
125 |
mask_image = ImageOps.invert(mask_image).resize((512,512))
|
|
|
156 |
adv_image = recover_image(adv_image, init_image, mask_image, background=True)
|
157 |
|
158 |
# A good seed
|
159 |
+
SEED = seed #Default is 9209
|
160 |
|
161 |
# Uncomment the below to generated other images
|
162 |
# SEED = np.random.randint(low=0, high=100000)
|
|
|
165 |
print(SEED)
|
166 |
|
167 |
#strength = 0.7
|
168 |
+
guidance_scale = scale# Default is 7.5
|
169 |
+
num_inference_steps = num_steps # Default is 100
|
170 |
|
171 |
image_nat = pipe_inpaint(prompt=prompt,
|
172 |
image=init_image,
|
|
|
192 |
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
193 |
|
194 |
|
195 |
+
examples_list = [["dog.png", "dog under heavy rain and muddy ground real", 7.5, 50, 9222]]
|
196 |
|
197 |
|
198 |
with gr.Blocks() as demo:
|
|
|
203 |
<p style="margin-bottom: 10px; font-size: 94%">This is an unofficial demo for Photoguard, which is an approach to safeguarding images against manipulation by ML-powered photo-editing models such as stable diffusion through immunization of images. The demo is based on the <a href='https://github.com/MadryLab/photoguard' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.</p>
|
204 |
''')
|
205 |
gr.HTML('''
|
206 |
+
<p align="center"><img src="https://raw.githubusercontent.com/MadryLab/photoguard/main/assets/hero_fig.PNG" style="width:60%"/></p>
|
207 |
''')
|
208 |
gr.HTML('''
|
209 |
<p style="margin-bottom: 10px; font-size: 94%"> A malevolent actor might download
|
|
|
224 |
mask_image_inpaint = gr.Image(type="pil", label = "Mask")
|
225 |
input_prompt_inpaint = gr.Textbox(label="Prompt")
|
226 |
run_btn_inpaint = gr.Button('Run')
|
227 |
+
|
228 |
+
with gr.Accordion("Advanced options", open=False):
|
229 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
|
230 |
+
num_steps = gr.Slider(label="Number of Inference Steps", minimum=5, maximum=125, value=100, step=5)
|
231 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
232 |
+
|
233 |
with gr.Row():
|
234 |
result_gallery = gr.Gallery(
|
235 |
label="Generated images", show_label=False, elem_id="gallery"
|
236 |
).style(grid=[2], height="auto")
|
237 |
|
238 |
+
run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img, scale, num_steps, seed], outputs = [result_gallery])
|
239 |
+
examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img,scale, num_steps, seed], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img)
|
240 |
+
run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint,scale, num_steps, seed], outputs = [result_gallery])
|
241 |
|
242 |
|
243 |
demo.launch(debug=True)
|