iclr2023 / app.py
RamAnanth1's picture
Update app.py
7322a7d
raw
history blame
3.63 kB
import streamlit as st
import json
import requests
import csv
import pandas as pd
import tqdm
import cohere
import os
from topically import Topically
from bertopic import BERTopic
from sklearn.cluster import KMeans
import numpy as np
venue = 'ICLR.cc/2023/Conference'
venue_short = 'iclr2023'
def get_conference_notes(venue, blind_submission=False):
"""
Get all notes of a conference (data) from OpenReview API.
If results are not final, you should set blind_submission=True.
"""
blind_param = '-/Blind_Submission' if blind_submission else ''
offset = 0
notes = []
while True:
print('Offset:', offset, 'Data:', len(notes))
url = f'https://api.openreview.net/notes?invitation={venue}/{blind_param}&offset={offset}'
response = requests.get(url)
data = response.json()
if len(data['notes']) == 0:
break
offset += 1000
notes.extend(data['notes'])
return notes
raw_notes = get_conference_notes(venue, blind_submission=True)
st.title("ICLR2023 Papers Visualization")
st.write("Number of submissions at ICLR 2023:", len(raw_notes))
df_raw = pd.json_normalize(raw_notes)
# set index as first column
# df_raw.set_index(df_raw.columns[0], inplace=True)
accepted_venues = ['ICLR 2023 poster', 'ICLR 2023 notable top 5%', 'ICLR 2023 notable top 25%']
df = df_raw[df_raw["content.venue"].isin(accepted_venues)]
st.write("Number of submissions accepted at ICLR 2023:", len(df))
df_filtered = df[['content.title', 'content.keywords', 'content.abstract', 'content.venue']]
df = df_filtered
if "CO_API_KEY" not in os.environ:
raise KeyError("CO_API_KEY not found in st.secrets or os.environ. Please set it in "
".streamlit/secrets.toml or as an environment variable.")
co = cohere.Client(os.environ["CO_API_KEY"])
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = ''.join(df.html_table_content)
html = f'''
<table>
{table_header}
{table_data}
</table>'''
return html
def get_visualizations():
table_header = '''
<tr>
<td width="25%">Title</td>
<td width="15%">Keywords</td>
<td width="10%">Venue</td>
<td width="50%">Abstract</td>
</tr>'''
list_of_titles = list(df["content.title"].values)
embeds = co.embed(texts=list_of_titles,
model="small").embeddings
embeds_npy = np.array(embeds)
# Load and initialize BERTopic to use KMeans clustering with 8 clusters only.
cluster_model = KMeans(n_clusters=8)
topic_model = BERTopic(hdbscan_model=cluster_model)
# df is a dataframe. df['title'] is the column of text we're modeling
df['topic'], probabilities = topic_model.fit_transform(df['content.title'], embeds_npy)
app = Topically(os.environ["CO_API_KEY"])
df['topic_name'], topic_names = app.name_topics((df['content.title'], df['topic']), num_generations=5)
#st.write("Topics extracted are:", topic_names)
topic_model.set_topic_labels(topic_names)
fig1 = topic_model.visualize_documents(df['content.title'].values,
embeddings=embeds_npy,
topics = list(range(8)),
custom_labels=True)
topic_model.set_topic_labels(topic_names)
fig2 = topic_model.visualize_barchart(custom_labels=True)
st.plotly_chart(fig1)
st.plotly_chart(fig2)
st.button("Run Visualization", on_click=get_visualizations)