Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
732325f
1
Parent(s):
0d4f09e
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from lavis.models import load_model_and_preprocess
|
3 |
+
import torch
|
4 |
+
|
5 |
+
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
|
8 |
+
model_name = "blip2_t5_instruct"
|
9 |
+
model_type = "flant5xl"
|
10 |
+
model, vis_processors, _ = load_model_and_preprocess(
|
11 |
+
name=args.model_name,
|
12 |
+
model_type=args.model_type,
|
13 |
+
is_eval=True,
|
14 |
+
device=device,
|
15 |
+
)
|
16 |
+
|
17 |
+
def infer(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, decoding_method):
|
18 |
+
use_nucleus_sampling = decoding_method == "Nucleus sampling"
|
19 |
+
print(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, use_nucleus_sampling)
|
20 |
+
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
21 |
+
|
22 |
+
samples = {
|
23 |
+
"image": image,
|
24 |
+
"prompt": prompt,
|
25 |
+
}
|
26 |
+
|
27 |
+
output = model.generate(
|
28 |
+
samples,
|
29 |
+
length_penalty=float(len_penalty),
|
30 |
+
repetition_penalty=float(repetition_penalty),
|
31 |
+
num_beams=beam_size,
|
32 |
+
max_length=max_len,
|
33 |
+
min_length=min_len,
|
34 |
+
top_p=top_p,
|
35 |
+
use_nucleus_sampling=use_nucleus_sampling,
|
36 |
+
)
|
37 |
+
|
38 |
+
return output[0]
|
39 |
+
|
40 |
+
theme = gr.themes.Monochrome(
|
41 |
+
primary_hue="indigo",
|
42 |
+
secondary_hue="blue",
|
43 |
+
neutral_hue="slate",
|
44 |
+
radius_size=gr.themes.sizes.radius_sm,
|
45 |
+
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
46 |
+
)
|
47 |
+
css = ".generating {visibility: hidden}"
|
48 |
+
|
49 |
+
with gr.Blocks(theme=theme, analytics_enabled=False,css=css) as demo:
|
50 |
+
with gr.Column(scale=3):
|
51 |
+
image_input = gr.Image(type="pil")
|
52 |
+
prompt_textbox = gr.Textbox(label="Prompt:", placeholder="prompt", lines=2)
|
53 |
+
output = gr.Textbox(label="Output")
|
54 |
+
submit = gr.Button("Run", variant="primary")
|
55 |
+
|
56 |
+
with gr.Column(scale=1):
|
57 |
+
min_len = gr.Slider(
|
58 |
+
minimum=1,
|
59 |
+
maximum=50,
|
60 |
+
value=1,
|
61 |
+
step=1,
|
62 |
+
interactive=True,
|
63 |
+
label="Min Length",
|
64 |
+
)
|
65 |
+
|
66 |
+
max_len = gr.Slider(
|
67 |
+
minimum=10,
|
68 |
+
maximum=500,
|
69 |
+
value=250,
|
70 |
+
step=5,
|
71 |
+
interactive=True,
|
72 |
+
label="Max Length",
|
73 |
+
)
|
74 |
+
|
75 |
+
sampling = gr.Radio(
|
76 |
+
choices=["Beam search", "Nucleus sampling"],
|
77 |
+
value="Beam search",
|
78 |
+
label="Text Decoding Method",
|
79 |
+
interactive=True,
|
80 |
+
)
|
81 |
+
|
82 |
+
top_p = gr.Slider(
|
83 |
+
minimum=0.5,
|
84 |
+
maximum=1.0,
|
85 |
+
value=0.9,
|
86 |
+
step=0.1,
|
87 |
+
interactive=True,
|
88 |
+
label="Top p",
|
89 |
+
)
|
90 |
+
|
91 |
+
beam_size = gr.Slider(
|
92 |
+
minimum=1,
|
93 |
+
maximum=10,
|
94 |
+
value=5,
|
95 |
+
step=1,
|
96 |
+
interactive=True,
|
97 |
+
label="Beam Size",
|
98 |
+
)
|
99 |
+
|
100 |
+
len_penalty = gr.Slider(
|
101 |
+
minimum=-1,
|
102 |
+
maximum=2,
|
103 |
+
value=1,
|
104 |
+
step=0.2,
|
105 |
+
interactive=True,
|
106 |
+
label="Length Penalty",
|
107 |
+
)
|
108 |
+
|
109 |
+
repetition_penalty = gr.Slider(
|
110 |
+
minimum=-1,
|
111 |
+
maximum=3,
|
112 |
+
value=1,
|
113 |
+
step=0.2,
|
114 |
+
interactive=True,
|
115 |
+
label="Repetition Penalty",
|
116 |
+
)
|
117 |
+
|
118 |
+
submit.click(infer, inputs=[image_input, prompt_textbox, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, sampling], outputs=[output])
|
119 |
+
|
120 |
+
demo.queue(concurrency_count=16).launch(debug=True)
|