Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import gradio as gr | |
import PIL.Image | |
from gradio_client import Client | |
lgm_mini_client = Client("dylanebert/LGM-mini") | |
triposr_client = Client("stabilityai/TripoSR") | |
import gradio as gr | |
import os | |
from gradio_client import Client | |
lgm_mini_client = Client("dylanebert/LGM-mini") | |
triposr_client = Client("stabilityai/TripoSR") | |
def run(image, model_name): | |
file_path = "temp.png" | |
image.save(file_path) | |
if model_name=='lgm-mini': | |
result = lgm_mini_client.predict( | |
file_path, # filepath in 'image' Image component | |
api_name="/run" | |
) | |
output = result | |
elif model_name=='triposr': | |
process_result = triposr_client.predict( | |
file_path, # filepath in 'Input Image' Image component | |
True, # bool in 'Remove Background' Checkbox component | |
0.85, # float (numeric value between 0.5 and 1.0) in 'Foreground Ratio' Slider component | |
api_name="/preprocess") | |
result = triposr_client.predict( | |
process_result, # filepath in 'Processed Image' Image component | |
256, # float (numeric value between 32 and 320) in 'Marching Cubes Resolution' Slider component | |
api_name="/generate") | |
output = result[0] | |
return output | |
demo = gr.Interface( | |
fn=run, | |
inputs=[gr.Image(type="pil"),gr.Textbox("Model Name")], | |
outputs=gr.Model3D(label="3D Model"), | |
) | |
demo.launch() |