|
|
|
import streamlit as st |
|
from rag_pipeline import load_and_process_documents, ask_question |
|
|
|
st.set_page_config(page_title="Bangladesh Law QA", layout="wide") |
|
st.title("π Bangladesh Law RAG QA System") |
|
st.markdown("Ask legal questions based on the Constitution, ICT Act, Labour Law, and more.") |
|
|
|
|
|
@st.cache_resource |
|
def setup(): |
|
pdfs = [ |
|
"./pdfs/Bangladesh-ICT-Act-2006.pdf", |
|
"./pdfs/Bangladesh-Labour-Act-2006_English-Upto-2018.pdf", |
|
"./pdfs/bangladesh_rti_act_2009_summary.pdf", |
|
"./pdfs/bgd-gbv-19-03-law-1860-eng-the-penal-code-1860.pdf", |
|
"./pdfs/constitution.pdf", |
|
"./pdfs/gazette.pdf", |
|
"./pdfs/unicef.pdf", |
|
] |
|
return load_and_process_documents(pdfs) |
|
|
|
chunks, retriever, qa_chain = setup() |
|
|
|
query = st.text_input("π Enter your legal question") |
|
law_options = ["All", "ICT Act", "Labour Act", "Penal Code", "Constitution"] |
|
law_filter = st.selectbox("π Filter by Law (optional)", law_options) |
|
if law_filter == "All": law_filter = None |
|
|
|
if query: |
|
with st.spinner("Answering..."): |
|
answer, sources = ask_question(query, retriever, qa_chain, law_filter) |
|
st.success(answer) |
|
with st.expander("π Source Documents"): |
|
for doc in sources: |
|
st.markdown(f"**{doc.metadata.get('law_name', '')} - {doc.metadata.get('section_heading', '')}**") |
|
st.text(doc.page_content[:500]) |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("### π§ͺ Try Sample Legal Questions:") |
|
sample_questions = [ |
|
("What does the Constitution say about freedom of expression?", "Constitution"), |
|
("Under ICT Act, is cyberbullying a crime?", "ICT Act"), |
|
("How many hours can a laborer work in a day?", "Labour Act"), |
|
("What are the punishments under the Digital Security Act for hacking?", "ICT Act"), |
|
("Is digital evidence allowed in court?", "ICT Act"), |
|
] |
|
|
|
for q, lf in sample_questions: |
|
if st.button(f"βΆοΈ {q}"): |
|
with st.spinner("Running..."): |
|
answer, sources = ask_question(q, retriever, qa_chain, law_filter=lf) |
|
st.success(answer) |
|
with st.expander("π Source Documents"): |
|
for doc in sources: |
|
st.markdown(f"**{doc.metadata.get('law_name', '')} - {doc.metadata.get('section_heading', '')}**") |
|
st.text(doc.page_content[:500]) |
|
|
|
|
|
|
|
import os, re |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.schema import Document |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import RetrievalQA |
|
|
|
def load_and_process_documents(pdf_paths): |
|
all_docs = [] |
|
for path in pdf_paths: |
|
loader = PyPDFLoader(path) |
|
pages = loader.load() |
|
for p in pages: |
|
p.metadata["source"] = os.path.basename(path) |
|
all_docs.extend(pages) |
|
|
|
|
|
for doc in all_docs: |
|
src = doc.metadata.get("source", "").lower() |
|
if "ict" in src: |
|
doc.metadata.update({"law_name": "ICT Act", "year": 2006, "law_type": "ICT"}) |
|
elif "labour" in src: |
|
doc.metadata.update({"law_name": "Labour Act", "year": 2018, "law_type": "Labour"}) |
|
elif "penal" in src: |
|
doc.metadata.update({"law_name": "Penal Code", "year": 1860, "law_type": "Criminal"}) |
|
elif "constitution" in src: |
|
doc.metadata.update({"law_name": "Constitution", "year": 1972, "law_type": "Constitutional"}) |
|
|
|
|
|
section_pattern = re.compile(r"(Section\\s\\d+\\.?\\d*|Article\\s\\d+\\.?\\d*|Chapter\\s\\d+\\.?\\d*)", re.IGNORECASE) |
|
section_chunks = [] |
|
for doc in all_docs: |
|
text = doc.page_content or "" |
|
splits = section_pattern.split(text) |
|
for i in range(1, len(splits), 2): |
|
heading = splits[i].strip() |
|
body = splits[i+1].strip() if i+1 < len(splits) else "" |
|
chunk_text = f"{heading}\n{body}" |
|
meta = doc.metadata.copy() |
|
meta.update({"section_heading": heading}) |
|
section_chunks.append(Document(page_content=chunk_text, metadata=meta)) |
|
|
|
|
|
embedding = GoogleGenerativeAIEmbeddings(model="models/embedding-001") |
|
vectorstore = Chroma.from_documents(section_chunks, embedding=embedding, persist_directory="./chroma_db") |
|
vectorstore.persist() |
|
|
|
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", temperature=0) |
|
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True, chain_type="stuff") |
|
|
|
return section_chunks, retriever, qa_chain |
|
|
|
def ask_question(query, retriever, qa_chain, law_filter=None, year_filter=None): |
|
docs = retriever.get_relevant_documents(query) |
|
if law_filter: |
|
docs = [d for d in docs if d.metadata.get("law_name") == law_filter] |
|
if year_filter: |
|
docs = [d for d in docs if d.metadata.get("year") == year_filter] |
|
|
|
if not docs: |
|
return "No relevant information found.", [] |
|
|
|
result = qa_chain({"input_documents": docs, "query": query}) |
|
return result["result"], result["source_documents"] |
|
|