project2 / app.py
Rakib023's picture
Create app.py
45fb094 verified
# app.py
import streamlit as st
from rag_pipeline import load_and_process_documents, ask_question
st.set_page_config(page_title="Bangladesh Law QA", layout="wide")
st.title("πŸ“š Bangladesh Law RAG QA System")
st.markdown("Ask legal questions based on the Constitution, ICT Act, Labour Law, and more.")
# Load and process PDFs
@st.cache_resource
def setup():
pdfs = [
"./pdfs/Bangladesh-ICT-Act-2006.pdf",
"./pdfs/Bangladesh-Labour-Act-2006_English-Upto-2018.pdf",
"./pdfs/bangladesh_rti_act_2009_summary.pdf",
"./pdfs/bgd-gbv-19-03-law-1860-eng-the-penal-code-1860.pdf",
"./pdfs/constitution.pdf",
"./pdfs/gazette.pdf",
"./pdfs/unicef.pdf",
]
return load_and_process_documents(pdfs)
chunks, retriever, qa_chain = setup()
query = st.text_input("πŸ” Enter your legal question")
law_options = ["All", "ICT Act", "Labour Act", "Penal Code", "Constitution"]
law_filter = st.selectbox("πŸ“˜ Filter by Law (optional)", law_options)
if law_filter == "All": law_filter = None
if query:
with st.spinner("Answering..."):
answer, sources = ask_question(query, retriever, qa_chain, law_filter)
st.success(answer)
with st.expander("πŸ“Ž Source Documents"):
for doc in sources:
st.markdown(f"**{doc.metadata.get('law_name', '')} - {doc.metadata.get('section_heading', '')}**")
st.text(doc.page_content[:500])
# BONUS: Predefined sample questions
st.markdown("---")
st.markdown("### πŸ§ͺ Try Sample Legal Questions:")
sample_questions = [
("What does the Constitution say about freedom of expression?", "Constitution"),
("Under ICT Act, is cyberbullying a crime?", "ICT Act"),
("How many hours can a laborer work in a day?", "Labour Act"),
("What are the punishments under the Digital Security Act for hacking?", "ICT Act"),
("Is digital evidence allowed in court?", "ICT Act"),
]
for q, lf in sample_questions:
if st.button(f"▢️ {q}"):
with st.spinner("Running..."):
answer, sources = ask_question(q, retriever, qa_chain, law_filter=lf)
st.success(answer)
with st.expander("πŸ“Ž Source Documents"):
for doc in sources:
st.markdown(f"**{doc.metadata.get('law_name', '')} - {doc.metadata.get('section_heading', '')}**")
st.text(doc.page_content[:500])
# rag_pipeline.py
import os, re
from langchain_community.document_loaders import PyPDFLoader
from langchain.schema import Document
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def load_and_process_documents(pdf_paths):
all_docs = []
for path in pdf_paths:
loader = PyPDFLoader(path)
pages = loader.load()
for p in pages:
p.metadata["source"] = os.path.basename(path)
all_docs.extend(pages)
# Add metadata
for doc in all_docs:
src = doc.metadata.get("source", "").lower()
if "ict" in src:
doc.metadata.update({"law_name": "ICT Act", "year": 2006, "law_type": "ICT"})
elif "labour" in src:
doc.metadata.update({"law_name": "Labour Act", "year": 2018, "law_type": "Labour"})
elif "penal" in src:
doc.metadata.update({"law_name": "Penal Code", "year": 1860, "law_type": "Criminal"})
elif "constitution" in src:
doc.metadata.update({"law_name": "Constitution", "year": 1972, "law_type": "Constitutional"})
# Section splitting
section_pattern = re.compile(r"(Section\\s\\d+\\.?\\d*|Article\\s\\d+\\.?\\d*|Chapter\\s\\d+\\.?\\d*)", re.IGNORECASE)
section_chunks = []
for doc in all_docs:
text = doc.page_content or ""
splits = section_pattern.split(text)
for i in range(1, len(splits), 2):
heading = splits[i].strip()
body = splits[i+1].strip() if i+1 < len(splits) else ""
chunk_text = f"{heading}\n{body}"
meta = doc.metadata.copy()
meta.update({"section_heading": heading})
section_chunks.append(Document(page_content=chunk_text, metadata=meta))
# Embedding + Vector store
embedding = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vectorstore = Chroma.from_documents(section_chunks, embedding=embedding, persist_directory="./chroma_db")
vectorstore.persist()
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", temperature=0)
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True, chain_type="stuff")
return section_chunks, retriever, qa_chain
def ask_question(query, retriever, qa_chain, law_filter=None, year_filter=None):
docs = retriever.get_relevant_documents(query)
if law_filter:
docs = [d for d in docs if d.metadata.get("law_name") == law_filter]
if year_filter:
docs = [d for d in docs if d.metadata.get("year") == year_filter]
if not docs:
return "No relevant information found.", []
result = qa_chain({"input_documents": docs, "query": query})
return result["result"], result["source_documents"]