Bangla_ASR_Demo / gradio-app.py
Rakib's picture
Initial commit
5b106c5
raw
history blame
6.46 kB
import subprocess
import time
import gradio as gr
import librosa
import pytube as pt
from models import asr, processor
from utils import format_timestamp
from vad import SpeechTimestampsMap, collect_chunks, get_speech_timestamps
## details: https://huggingface.co/docs/diffusers/optimization/fp16#automatic-mixed-precision-amp
# from torch import autocast
apply_vad = True
vad_parameters = {}
# task = "transcribe" # transcribe or translate
# language = "bn"
# asr.model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
# asr.model.config.max_new_tokens = 448 #default is 448
def _preprocess(filename):
audio_name = "audio.wav"
subprocess.call(
[
"ffmpeg",
"-y",
"-i",
filename,
"-acodec",
"pcm_s16le",
"-ar",
"16000",
"-ac",
"1",
"-loglevel",
"quiet",
audio_name,
]
)
return audio_name
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
print(f"\n\nFile is: {file}\n\n")
# for _preprocess(). No need if name of file provided in string format to asr pipeline as automatically uses ffmeg.
# Only required if ndarray given by using librosa.load() to load a file
start_time = time.time()
print("Starting Preprocessing")
# speech_array = _preprocess(filename=file)
filename = _preprocess(filename=file)
speech_array, sample_rate = librosa.load(f"{filename}", sr=16_000)
if apply_vad:
duration = speech_array.shape[0] / sample_rate
print(f"Processing audio with duration: {format_timestamp(duration)}")
speech_chunks = get_speech_timestamps(speech_array, **vad_parameters)
speech_array = collect_chunks(speech_array, speech_chunks)
print(f"VAD filter removed {format_timestamp(duration - (speech_array.shape[0] / sample_rate))}")
remaining_segments = ", ".join(
f'[{format_timestamp(chunk["start"] / sample_rate)} -> {format_timestamp(chunk["end"] / sample_rate)}]'
for chunk in speech_chunks
)
print(f"VAD filter kept the following audio segments: {remaining_segments}")
if not remaining_segments:
return "ERROR: No speech detected in the audio file"
print(f"\n Preprocessing COMPLETED in {round(time.time()-start_time, 2)}s \n")
start_time = time.time()
print("Starting Inference")
text = asr(speech_array)["text"]
# text = asr(file)["text"]
# with autocast("cuda"):
# text = asr(speech_array)["text"]
print(f"\n Inference COMPLETED in {round(time.time()-start_time, 2)}s \n")
return warn_output + text
def _return_yt_html_embed(yt_url):
if "?v=" in yt_url:
video_id = yt_url.split("?v=")[-1].split("&")[0]
else:
video_id = yt_url.split("/")[-1].split("?feature=")[0]
print(f"\n\nYT ID is: {video_id}\n\n")
return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'
def yt_transcribe(yt_url):
start_time = time.time()
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
filename = "audio.mp3"
stream.download(filename=filename)
print(f"\n YT Audio Downloaded in {round(time.time()-start_time, 2)}s \n")
# for _preprocess(). No need if name of file provided in string format to asr pipeline as automatically uses ffmeg.
# Only required if ndarray given by using librosa.load() to load a file
start_time = time.time()
# print("Starting Preprocessing")
# speech_array = _preprocess(filename=filename)
# filename = _preprocess(filename=filename)
# speech_array, sample_rate = librosa.load(f"{filename}", sr=16_000)
# print(f"\n Preprocessing COMPLETED in {round(time.time()-start_time, 2)}s \n")
start_time = time.time()
print("Starting Inference")
text = asr(filename)["text"]
# with autocast("cuda"):
# text = asr(speech_array)["text"]
print(f"\n Inference COMPLETED in {round(time.time()-start_time, 2)}s \n")
return html_embed_str, text
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(source="microphone", type="filepath", label="Microphone"),
gr.Audio(source="upload", type="filepath", label="Upload File"),
],
outputs="text",
title="Bangla Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs in BANGLA with the click of a button!"
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(
lines=1,
placeholder="Paste the URL to a Bangla language YouTube video here",
label="YouTube URL",
)
],
outputs=["html", "text"],
title="Bangla Demo: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos in BANGLA with the click of a button!"
),
allow_flagging="never",
)
# def transcribe2(audio, state=""):
# text = "text"
# state += text + " "
# return state, state
# Set the starting state to an empty string
# real_transcribe = gr.Interface(
# fn=transcribe2,
# inputs=[
# gr.Audio(source="microphone", type="filepath", streaming=True),
# "state"
# ],
# outputs=[
# "textbox",
# "state"
# ],
# live=True)
# demo = gr.TabbedInterface([mf_transcribe, yt_transcribe,real_transcribe], ["Transcribe Bangla Audio", "Transcribe Bangla YouTube Video","real time"])
demo = gr.TabbedInterface(
[mf_transcribe, yt_transcribe],
["Transcribe Bangla Audio", "Transcribe Bangla YouTube Video"],
)
if __name__ == "__main__":
demo.queue()
demo.launch(share="True")
# demo.launch(share='True', server_name="0.0.0.0", server_port=8080)