Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# Load environment variables if needed | |
load_dotenv() | |
# Use the Qwen2.5-7B-Instruct-1M model from Hugging Face | |
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct" | |
# Initialize tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
device_map="auto", # or "cpu", "cuda", etc. as appropriate | |
trust_remote_code=True | |
) | |
# Create pipeline | |
qwen_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
def generate_response(retrieved_texts, query, max_new_tokens=512): | |
""" | |
Generates a response based on the retrieved texts and query using the Qwen pipeline. | |
Args: | |
retrieved_texts (list): List of retrieved text strings. | |
query (str): The user's query string. | |
max_new_tokens (int): Maximum number of tokens for the generated answer. | |
Returns: | |
str: Generated response. | |
""" | |
# Construct a simple prompt using your retrieved context | |
context = "\n".join(retrieved_texts) | |
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer:" | |
# Generate the text | |
result = qwen_pipeline( | |
prompt, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, # or False if you prefer deterministic output | |
temperature=0.7, # adjust as needed | |
) | |
# Extract the generated text from the pipeline's output | |
generated_text = result[0]["generated_text"] | |
# Optional: Clean up the output to isolate the answer portion | |
if "Answer:" in generated_text: | |
answer_part = generated_text.split("Answer:")[-1].strip() | |
else: | |
answer_part = generated_text | |
return answer_part | |