ObjectDetection / app.py
RakanAlsheraiwi's picture
Update app.py
44794ec verified
import cv2
import torch
from PIL import Image, ImageDraw
import gradio as gr
import pandas as pd
from transformers import pipeline
# تحميل النموذج
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ar")
# دالة لاكتشاف الكائنات في الصور
def detect_and_draw_image(input_image):
results = model(input_image)
detections = results.xyxy[0].numpy()
draw = ImageDraw.Draw(input_image)
counts = {}
for detection in detections:
xmin, ymin, xmax, ymax, conf, class_id = detection
label = model.names[int(class_id)]
counts[label] = counts.get(label, 0) + 1
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=2)
draw.text((xmin, ymin), f"{label}: {conf:.2f}", fill="white")
translated_labels = translator(list(counts.keys()))
df = pd.DataFrame({
'Label (English)': list(counts.keys()),
'Label (Arabic)': [t['translation_text'] for t in translated_labels],
'Object Count': list(counts.values())
})
return input_image, df
def detect_and_draw_video(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
overall_counts = {}
seen_objects = [] # قائمة لتتبع الكائنات التي تم اكتشافها
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (640, 480))
results = model(frame)
detections = results.xyxy[0].numpy()
for detection in detections:
xmin, ymin, xmax, ymax, conf, class_id = detection
label = model.names[int(class_id)]
current_object = (label, int(xmin), int(ymin), int(xmax), int(ymax))
# التحقق من وجود الكائن في قائمة seen_objects
if not any(existing[0] == label and
(existing[1] < xmax and existing[3] > xmin and
existing[2] < ymax and existing[4] > ymin) for existing in seen_objects):
seen_objects.append(current_object)
overall_counts[label] = overall_counts.get(label, 0) + 1
# رسم المستطيل والكلمات على الإطار
cv2.rectangle(frame, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 0, 0), 2)
cv2.putText(frame, f"{label}: {conf:.2f}", (int(xmin), int(ymin) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
frames.append(frame)
cap.release()
output_path = 'output.mp4'
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 20.0, (640, 480))
for frame in frames:
out.write(frame)
out.release()
# ترجمة التسميات إلى العربية
translated_labels = translator(list(overall_counts.keys()))
# إنشاء DataFrame لتخزين النتائج
df = pd.DataFrame({
'Label (English)': list(overall_counts.keys()),
'Label (Arabic)': [t['translation_text'] for t in translated_labels],
'Object Count': list(overall_counts.values())
})
return output_path, df
# واجهة صورة
image_interface = gr.Interface(
fn=detect_and_draw_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=[gr.Image(type="pil"), gr.Dataframe(label="Object Counts")],
title="Object Detection for Images",
description="Upload an image to see the objects detected and their counts.",
examples=['assets/MessiVsAlhilal.jpg', 'assets/Manhattan002_0.webp'] # إضافة الأمثلة هنا
)
video_interface = gr.Interface(
fn=detect_and_draw_video,
inputs=gr.Video(label="Upload Video"),
outputs=[gr.Video(label="Processed Video"), gr.Dataframe(label="Object Counts")],
title="Object Detection for Videos",
description="Upload a video to see the objects detected and their counts.",
examples=['assetsV/Untitled.mp4', 'assetsV/Untitled1.mp4'] # إضافة الأمثلة هنا
)
app = gr.TabbedInterface([image_interface, video_interface], ["Image Detection", "Video Detection"])
app.launch(debug=True)