Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
from PIL import Image, ImageDraw | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from transformers import pipeline | |
# Load the YOLOv5 model | |
# Use a local clone of YOLOv5 | |
yolo_repo = 'ultralytics/yolov5' | |
model = torch.hub.load(yolo_repo, 'yolov5s', source='github') | |
# Load the translation model | |
translator = pipeline("translation_en_to_ar", model="Helsinki-NLP/opus-mt-en-ar") | |
# Define a function to detect objects and draw bounding boxes for images | |
def detect_and_draw_image(input_image): | |
results = model(input_image) | |
detections = results.xyxy[0].numpy() | |
draw = ImageDraw.Draw(input_image) | |
counts = {} | |
for detection in detections: | |
xmin, ymin, xmax, ymax, conf, class_id = detection | |
# Update counts for each label | |
label = model.names[int(class_id)] | |
counts[label] = counts.get(label, 0) + 1 | |
# Draw the bounding box | |
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=2) | |
draw.text((xmin, ymin), f"{label}: {conf:.2f}", fill="white") | |
# Translate counts to Arabic | |
translated_counts = translator(list(counts.keys())) | |
df = pd.DataFrame({ | |
'label (English)': list(counts.keys()), | |
'label (Arabic)': [t['translation_text'] for t in translated_counts], | |
'counts': list(counts.values()) | |
}) | |
return input_image, df | |
# Define a function to detect objects and draw bounding boxes for videos | |
def detect_and_draw_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
frame_shape = None | |
overall_counts = {} | |
detected_objects = set() # Set to keep track of unique detections | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame = cv2.resize(frame, (640, 480)) | |
results = model(frame) | |
detections = results.xyxy[0].numpy() | |
for detection in detections: | |
xmin, ymin, xmax, ymax, conf, class_id = detection | |
# Create a unique identifier for the object based on its bounding box | |
identifier = (model.names[int(class_id)], int((xmin + xmax) / 2), int((ymin + ymax) / 2)) | |
# Count the object only if it hasn't been detected before | |
if identifier not in detected_objects: | |
detected_objects.add(identifier) | |
label = model.names[int(class_id)] | |
overall_counts[label] = overall_counts.get(label, 0) + 1 | |
cv2.rectangle(frame, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 0, 0), 2) | |
cv2.putText(frame, f"{model.names[int(class_id)]}: {conf:.2f}", (int(xmin), int(ymin) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 255, 255), 2) | |
frames.append(frame) | |
cap.release() | |
if frame_shape is None: | |
return None, None | |
output_path = 'output.mp4' | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 20.0, (640, 480)) | |
for frame in frames: | |
out.write(frame) | |
out.release() | |
# Translate counts to Arabic | |
translated_counts = translator(list(overall_counts.keys())) | |
df = pd.DataFrame({ | |
'label (English)': list(overall_counts.keys()), | |
'label (Arabic)': [t['translation_text'] for t in translated_counts], | |
'counts': list(overall_counts.values()) | |
}) | |
return output_path, df | |
# Create separate interfaces for images and videos | |
image_interface = gr.Interface( | |
fn=detect_and_draw_image, | |
inputs=gr.Image(type="pil", label="Upload Image"), | |
outputs=[gr.Image(type="pil"), gr.Dataframe(label="Object Counts")], | |
title="Object Detection for Images", | |
description="Upload an image to see the objects detected by YOLOv5 with bounding boxes and their counts." | |
) | |
video_interface = gr.Interface( | |
fn=detect_and_draw_video, | |
inputs=gr.Video(label="Upload Video"), | |
outputs=[gr.Video(label="Processed Video"), gr.Dataframe(label="Object Counts")], | |
title="Object Detection for Videos", | |
description="Upload a video to see the objects detected by YOLOv5 with bounding boxes and their counts." | |
) | |
# Combine interfaces into a single app | |
app = gr.TabbedInterface([image_interface, video_interface], ["Image Detection", "Video Detection"]) | |
# Launch the app | |
app.launch(debug=True) | |