RajuKandasamy's picture
Update app.py
86a9345
raw
history blame
2.57 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import gradio as gr
class ChatbotService:
def __init__(self, model_name="RajuKandasamy/tamillama_tiny_30m"):
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.streamer = None
def call(self, prompt):
self.streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, timeout=5)
prompt = prompt.replace("<br>", "\n")
print(prompt)
inputs = self.tokenizer(prompt, return_tensors="pt")
print(inputs)
kwargs = dict(input_ids=inputs["input_ids"], streamer=self.streamer, max_new_tokens=512, do_sample=True, top_p=0.8, top_k=500, temperature=0.001, repetition_penalty=1.4)
thread = Thread(target=self.model.generate, kwargs=kwargs)
thread.start()
return ""
import gradio as gr
example_questions = [
f"""கதை:
ஒரு காலத்தில் ஒரு பெரிய கோட்டையில் வாழ்ந்த அன்பான மனிதர் ஒருவர் இருந்தார்.""",
f"""சுருக்கம்:
இளவரசனும் அரக்கனும்""",
f"""Words: prevent, car, broken
Features: Dialogue""",
f"""சொற்கள்:
தீர்வு"""
]
chatbot_service = ChatbotService()
with gr.Blocks() as demo:
chatbot = gr.Chatbot().style(height=400)
with gr.Row():
msg = gr.Textbox(placeholder="Type your message here...", inputs="text",outputs="text", label="Story Prompt:")
run = gr.Button("Run")
examples_dropdown = gr.Dropdown(choices=example_questions, label="Select an example prompt")
examples_dropdown.change(fn=lambda x: x, inputs=examples_dropdown, outputs=msg)
clear = gr.Button("Clear")
def user(question, user_message, history):
if history == None:
history = []
user_message = question
return "", history + [[user_message, None]]
def bot(history):
#print("Question: ", history[-1][0])
chatbot_service.call(history[-1][0])
history[-1][1] = ""
for character in chatbot_service.streamer:
print(character)
history[-1][1] += character
yield history
run.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()