RajatChaudhari commited on
Commit
eed549e
1 Parent(s): a4f89e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -2
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  from operator import itemgetter
3
  import os
 
4
 
5
  from langchain_community.vectorstores import FAISS
6
  from langchain_core.output_parsers import StrOutputParser
@@ -52,12 +53,15 @@ retriever = vectorstore.as_retriever()
52
 
53
  qa = RetrievalQA.from_chain_type(
54
  llm=hf, chain_type="stuff", retriever=retriever, return_source_documents=False)
 
55
 
56
  def greet(Question):
57
  answer = qa({"query": Question})
58
 
59
  pa=[a.split("Helpful Answer: ") for a in answer.get('result').split('\n') if "Helpful Answer" in a]
60
-
 
 
61
  return pa[0][-1]
62
 
63
  if __name__ == "__main__":
@@ -67,8 +71,11 @@ if __name__ == "__main__":
67
  description = """
68
  <img src="https://superagi.com/wp-content/uploads/2023/10/Introduction-to-RAGA-Retrieval-Augmented-Generation-and-Actions-1200x600.png.webp" width=100%>
69
  <br>
70
- Demo using TinyLlama, a chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. This space demonstrate application of RAG on a small model and its effectiveness, I used it because of the space constraint. The current space runs on mere <b>2GB of RAM</b>, hence there is some delay in generating output. Test this to your hearts content and let me know your thoughts, I will keep updating this space with tiny improvements on architecture and design
71
  <ul>
 
 
 
72
  <li>update1: This space now does not create a faiss index on build, it uses a locally saved faiss index</li>
73
  <li>update2: This space now uses google/gemma-1.1-2b-it model to generate output, reduces the response time to 1/3rd</li>
74
  </ul>
@@ -77,6 +84,8 @@ if __name__ == "__main__":
77
  <ul>You can ask questions like -
78
  <li>What is langchain framework?</li>
79
  <li>What is Action Agent?</li>
 
 
80
  </ul>
81
  Go through this paper here to find more about langchain and then test how this solution performs. <a href='https://www.researchgate.net/publication/372669736_Creating_Large_Language_Model_Applications_Utilizing_LangChain_A_Primer_on_Developing_LLM_Apps_Fast' target='_blank'>This paper is the data source for this solution</a>
82
  Have you already used RAG? feel free to suggest improvements
 
1
  import gradio as gr
2
  from operator import itemgetter
3
  import os
4
+ import pandas as pd
5
 
6
  from langchain_community.vectorstores import FAISS
7
  from langchain_core.output_parsers import StrOutputParser
 
53
 
54
  qa = RetrievalQA.from_chain_type(
55
  llm=hf, chain_type="stuff", retriever=retriever, return_source_documents=False)
56
+ queries=pd.read_csv('./interactions/queries.csv')
57
 
58
  def greet(Question):
59
  answer = qa({"query": Question})
60
 
61
  pa=[a.split("Helpful Answer: ") for a in answer.get('result').split('\n') if "Helpful Answer" in a]
62
+ new=pd.DataFrame({'query':Question,'response':pa[0][-1]})
63
+ queries.append(new)
64
+ queries.to_csv('./interactions/queries.csv')
65
  return pa[0][-1]
66
 
67
  if __name__ == "__main__":
 
71
  description = """
72
  <img src="https://superagi.com/wp-content/uploads/2023/10/Introduction-to-RAGA-Retrieval-Augmented-Generation-and-Actions-1200x600.png.webp" width=100%>
73
  <br>
74
+ Demo using Vector store-backed retriever. This space demonstrate application of RAG on a small model and its effectiveness, I used small model because of the space constraint. The current space runs on mere <b>2GB of RAM</b>, hence there is some delay in generating output. Test this to your hearts content and let me know your thoughts, I will keep updating this space with tiny improvements on architecture and design
75
  <ul>
76
+ <li>model: TinyLlama/TinyLlama-1.1B-Chat-v1.0</li>
77
+ <li></li>
78
+
79
  <li>update1: This space now does not create a faiss index on build, it uses a locally saved faiss index</li>
80
  <li>update2: This space now uses google/gemma-1.1-2b-it model to generate output, reduces the response time to 1/3rd</li>
81
  </ul>
 
84
  <ul>You can ask questions like -
85
  <li>What is langchain framework?</li>
86
  <li>What is Action Agent?</li>
87
+ <li>What are forms of memory implementation in langchain</li>
88
+ <li>What is question answering from documents</li>
89
  </ul>
90
  Go through this paper here to find more about langchain and then test how this solution performs. <a href='https://www.researchgate.net/publication/372669736_Creating_Large_Language_Model_Applications_Utilizing_LangChain_A_Primer_on_Developing_LLM_Apps_Fast' target='_blank'>This paper is the data source for this solution</a>
91
  Have you already used RAG? feel free to suggest improvements