RajatChaudhari commited on
Commit
84fd537
·
verified ·
1 Parent(s): 70f04ce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -32,14 +32,14 @@ pipe = pipeline("text-generation", model = model, tokenizer = tokenizer, max_new
32
  hf = HuggingFacePipeline(pipeline=pipe)
33
 
34
  def document_prep():
35
- ## commenting this code because now we are loading vectors directly and not parsing the pdf
36
  pdfLoader = PyPDFLoader("./LangchainPaper/RAGInputPaper.pdf")
37
  documents = pdfLoader.load()
38
 
39
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = 512, chunk_overlap = 30)
40
  docs = text_splitter.split_documents(documents)
41
 
42
- creating vector embeddings during run using FAISS
43
  vectorstore = FAISS.from_documents(
44
  docs, embedding=embeddings
45
  )
@@ -53,6 +53,7 @@ def load_vector():
53
  return retriever
54
 
55
  # call the function from which you want to load the vector
 
56
  retriever=load_vector()
57
 
58
  ## In memory store
 
32
  hf = HuggingFacePipeline(pipeline=pipe)
33
 
34
  def document_prep():
35
+
36
  pdfLoader = PyPDFLoader("./LangchainPaper/RAGInputPaper.pdf")
37
  documents = pdfLoader.load()
38
 
39
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = 512, chunk_overlap = 30)
40
  docs = text_splitter.split_documents(documents)
41
 
42
+ # creating vector embeddings during run using FAISS
43
  vectorstore = FAISS.from_documents(
44
  docs, embedding=embeddings
45
  )
 
53
  return retriever
54
 
55
  # call the function from which you want to load the vector
56
+ retriever=document_prep()
57
  retriever=load_vector()
58
 
59
  ## In memory store