Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer | |
| import os | |
| import spaces | |
| import torch | |
| from llama_index.llms.huggingface import HuggingFaceLLM | |
| # Optional quantization to 4bit | |
| from transformers import BitsAndBytesConfig | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.core import Settings | |
| import faiss | |
| from llama_index.core import ( | |
| load_index_from_storage, | |
| StorageContext, | |
| ) | |
| from llama_index.vector_stores.faiss import FaissVectorStore | |
| from llama_index.core.tools import QueryEngineTool, ToolMetadata | |
| import json | |
| from typing import Sequence, List | |
| from llama_index.core.llms import ChatMessage | |
| from llama_index.core.tools import BaseTool, FunctionTool | |
| from llama_index.core.agent import ReActAgent | |
| import nest_asyncio | |
| from llama_index.core.tools import QueryEngineTool, ToolMetadata | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| DESCRIPTION = ''' | |
| <div> | |
| <h1 style="text-align: center;">Mistral 7B Instruct v0.3</h1> | |
| <p>This Space demonstrates the Agent based RAG on multiple documents using Gemma 2b it and llama index</p> | |
| </div> | |
| ''' | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "google/gemma-1.1-2b-it", | |
| token=HF_TOKEN, | |
| ) | |
| stopping_ids = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
| ] | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit = True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_quant_type = "nf4", | |
| bnb_4bit_use_double_quant = True, | |
| ) | |
| llm = HuggingFaceLLM( | |
| model_name = "google/gemma-1.1-2b-it", | |
| model_kwargs = { | |
| "token": HF_TOKEN, | |
| "torch_dtype": torch.bfloat16, # comment this line and uncomment below to use 4bit | |
| #"quantization_config": quantization_config | |
| }, | |
| generate_kwargs = { | |
| "do_sample": True, | |
| "temperature": 0.6, | |
| "top_p": 0.9, | |
| }, | |
| tokenizer_name = "google/gemma-1.1-2b-it", | |
| tokenizer_kwargs = {"token": HF_TOKEN}, | |
| stopping_ids = stopping_ids, | |
| ) | |
| embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5") | |
| # dimensions of bge-large-en-v1.5 obtained from https://huggingface.co/BAAI/bge-large-en-v1.5 | |
| d = 1024 | |
| faiss_index = faiss.IndexFlatL2(d) | |
| nest_asyncio.apply() | |
| # bge embedding model | |
| Settings.embed_model = embed_model | |
| # GPU - Llama-3-8B-Instruct model | |
| # CPU - Gemma 1.1 2B it instruct | |
| Settings.llm = llm | |
| # rebuild storage context | |
| geoVectorStore = FaissVectorStore.from_persist_dir("./geoindex/") | |
| geoStorageContext = StorageContext.from_defaults( | |
| vector_store=geoVectorStore, persist_dir="./geoindex/") | |
| geoindex = load_index_from_storage(storage_context=geoStorageContext) | |
| bioVectorStore = FaissVectorStore.from_persist_dir("./bioindex/") | |
| bioStorageContext = StorageContext.from_defaults( | |
| vector_store=bioVectorStore, persist_dir="./bioindex/") | |
| bioindex = load_index_from_storage(storage_context=geoStorageContext) | |
| geo_engine = geoindex.as_query_engine(similarity_top_k=3) | |
| bio_engine = bioindex.as_query_engine(similarity_top_k=3) | |
| query_engine_tools = [ | |
| QueryEngineTool( | |
| query_engine=geo_engine, | |
| metadata=ToolMetadata( | |
| name="geography", | |
| description=( | |
| "This is a geography textbook, it provides information about geography. " | |
| "Use a detailed plain text question as input to the tool." | |
| ), | |
| ), | |
| ), | |
| QueryEngineTool( | |
| query_engine=bio_engine, | |
| metadata=ToolMetadata( | |
| name="biology", | |
| description=( | |
| "This is a biology textbook it provides information about biology. " | |
| "Use a detailed plain text question as input to the tool." | |
| ), | |
| ), | |
| ), | |
| ] | |
| agent = ReActAgent.from_tools( | |
| query_engine_tools, | |
| llm=llm, | |
| verbose=False, | |
| ) | |
| def respond( | |
| message, | |
| # history: list[tuple[str, str]], | |
| # system_message, | |
| # max_tokens, | |
| # temperature, | |
| # top_p, | |
| ): | |
| prompt=f'''Analyze the question: {message} and use appropriate tool to get the relevant context and answer the question, do not answer on your own and output only Observation''' | |
| response = agent.chat(prompt) | |
| return print(str(response)) | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| # additional_inputs=[ | |
| # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| # gr.Slider( | |
| # minimum=0.1, | |
| # maximum=1.0, | |
| # value=0.95, | |
| # step=0.05, | |
| # label="Top-p (nucleus sampling)", | |
| # ), | |
| # ], | |
| examples=[ | |
| ["What are different types of rural settlement?"], | |
| ["Explain Urbanisation in India?"], | |
| ["What was the level of urbanisation in India in 2011?"], | |
| ["List the religious and cultural towns in India?"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |