Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer | |
import os | |
import spaces | |
import torch | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
# Optional quantization to 4bit | |
from transformers import BitsAndBytesConfig | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core import Settings | |
import faiss | |
from llama_index.core import ( | |
load_index_from_storage, | |
StorageContext, | |
) | |
from llama_index.vector_stores.faiss import FaissVectorStore | |
from llama_index.core.tools import QueryEngineTool, ToolMetadata | |
import json | |
from typing import Sequence, List | |
from llama_index.core.llms import ChatMessage | |
from llama_index.core.tools import BaseTool, FunctionTool | |
from llama_index.core.agent import ReActAgent | |
import nest_asyncio | |
from llama_index.core.tools import QueryEngineTool, ToolMetadata | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">Mistral 7B Instruct v0.3</h1> | |
<p>This Space demonstrates the Agent based RAG on multiple documents using Gemma 2b it and llama index</p> | |
</div> | |
''' | |
tokenizer = AutoTokenizer.from_pretrained( | |
"google/gemma-1.1-2b-it", | |
token=HF_TOKEN, | |
) | |
stopping_ids = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
] | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit = True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_quant_type = "nf4", | |
bnb_4bit_use_double_quant = True, | |
) | |
llm = HuggingFaceLLM( | |
model_name = "google/gemma-1.1-2b-it", | |
model_kwargs = { | |
"token": HF_TOKEN, | |
"torch_dtype": torch.bfloat16, # comment this line and uncomment below to use 4bit | |
#"quantization_config": quantization_config | |
}, | |
generate_kwargs = { | |
"do_sample": True, | |
"temperature": 0.6, | |
"top_p": 0.9, | |
}, | |
tokenizer_name = "google/gemma-1.1-2b-it", | |
tokenizer_kwargs = {"token": HF_TOKEN}, | |
stopping_ids = stopping_ids, | |
) | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5") | |
# dimensions of bge-large-en-v1.5 obtained from https://huggingface.co/BAAI/bge-large-en-v1.5 | |
d = 1024 | |
faiss_index = faiss.IndexFlatL2(d) | |
nest_asyncio.apply() | |
# bge embedding model | |
Settings.embed_model = embed_model | |
# GPU - Llama-3-8B-Instruct model | |
# CPU - Gemma 1.1 2B it instruct | |
Settings.llm = llm | |
# rebuild storage context | |
geoVectorStore = FaissVectorStore.from_persist_dir("./geoindex/") | |
geoStorageContext = StorageContext.from_defaults( | |
vector_store=geoVectorStore, persist_dir="./geoindex/") | |
geoindex = load_index_from_storage(storage_context=geoStorageContext) | |
bioVectorStore = FaissVectorStore.from_persist_dir("./bioindex/") | |
bioStorageContext = StorageContext.from_defaults( | |
vector_store=bioVectorStore, persist_dir="./bioindex/") | |
bioindex = load_index_from_storage(storage_context=geoStorageContext) | |
geo_engine = geoindex.as_query_engine(similarity_top_k=3) | |
bio_engine = bioindex.as_query_engine(similarity_top_k=3) | |
query_engine_tools = [ | |
QueryEngineTool( | |
query_engine=geo_engine, | |
metadata=ToolMetadata( | |
name="geography", | |
description=( | |
"This is a geography textbook, it provides information about geography. " | |
"Use a detailed plain text question as input to the tool." | |
), | |
), | |
), | |
QueryEngineTool( | |
query_engine=bio_engine, | |
metadata=ToolMetadata( | |
name="biology", | |
description=( | |
"This is a biology textbook it provides information about biology. " | |
"Use a detailed plain text question as input to the tool." | |
), | |
), | |
), | |
] | |
agent = ReActAgent.from_tools( | |
query_engine_tools, | |
llm=llm, | |
verbose=False, | |
) | |
def respond( | |
message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
): | |
prompt=f'''Analyze the question: {message} and use appropriate tool to get the relevant context and answer the question, do not answer on your own and output only Observation''' | |
response = agent.chat(prompt) | |
return print(str(response)) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
examples=[ | |
["What are different types of rural settlement?"], | |
["Explain Urbanisation in India?"], | |
["What was the level of urbanisation in India in 2011?"], | |
["List the religious and cultural towns in India?"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |