|
import torch |
|
import time |
|
|
|
import gradio as gr |
|
import yt_dlp as youtube_dl |
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
import tempfile |
|
import os |
|
|
|
BATCH_SIZE = 8 |
|
FILE_LIMIT_MB = 1 |
|
YT_LENGTH_LIMIT_S = 300 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def transcribe(model, audio, task): |
|
if audio is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=model, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"] |
|
return text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="100%" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def yt_transcribe(model, yt_url, task): |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=model, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"] |
|
|
|
return html_embed_str, text |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Dropdown([ |
|
("tiny", "RaivisDejus/whisper-tiny-lv"), |
|
("small", "RaivisDejus/whisper-small-lv"), |
|
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17") |
|
], label="Model", value="RaivisDejus/whisper-small-lv"), |
|
gr.Audio(sources=["upload", "microphone"],type="filepath", label="Audio"), |
|
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe"), |
|
], |
|
outputs=gr.Textbox(label="Transcription", lines=15), |
|
title="Latvian speech recognition: Three models available", |
|
description=(""" |
|
π€ [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also poor accuracy. |
|
On this demo hardware 30 second audio will take ~45 seconds to transcribe. |
|
|
|
π€ [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM. |
|
On this demo hardware 30 second audio will take ~1 minute to transcribe. |
|
|
|
π€ [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU. |
|
On this demo hardware 30 second audio will take ~4 minutes to transcribe. |
|
|
|
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/) |
|
""" |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.Dropdown([ |
|
("tiny", "RaivisDejus/whisper-tiny-lv"), |
|
("small", "RaivisDejus/whisper-small-lv"), |
|
], label="Model", value="RaivisDejus/whisper-small-lv"), |
|
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL (max 5min long)"), |
|
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe") |
|
], |
|
|
|
outputs=[gr.HTML(), gr.Textbox(label="Transcription", lines=10)], |
|
title="Latvian speech recognition: Two models available", |
|
description=(""" |
|
π€ [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also poor accuracy |
|
|
|
π€ [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM |
|
|
|
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/) |
|
""" |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([transcribe, yt_transcribe], ["Microphone / Audio file", "YouTube"]) |
|
|
|
demo.queue(max_size=3) |
|
demo.launch() |
|
|
|
|