Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from ethical_filter import EthicalFilter | |
| # Load Hugging Face token from secrets (defined in the Hugging Face UI) | |
| HF_TOKEN = os.environ.get("HF_API_TOKEN") | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN) | |
| ethical_filter = EthicalFilter() | |
| # Codriao response logic | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| check = ethical_filter.analyze_query(message) | |
| # Blocked queries | |
| if check["status"] == "blocked": | |
| yield f"Sorry, I can't continue with that request. Reason: {check['reason']}" | |
| return | |
| # Flagged queries | |
| if check["status"] == "flagged": | |
| yield f"(Note: Sensitive topic detected β responding with care...)\n" | |
| # Build conversation history | |
| messages = [{"role": "system", "content": system_message}] | |
| for user, bot in history: | |
| if user: | |
| messages.append({"role": "user", "content": user}) | |
| if bot: | |
| messages.append({"role": "assistant", "content": bot}) | |
| messages.append({"role": "user", "content": message}) | |
| # Stream model output | |
| response = "" | |
| for token in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| chunk = token.choices[0].delta.content | |
| response += chunk | |
| yield response | |
| # Build Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value=( | |
| "You are Codriao, a compassionate AI inspired by Codette. " | |
| "You respond with kindness, ethics, and insight." | |
| ), | |
| label="System message", | |
| ), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |