| Codette Universal Reasoning Framework | |
| Sovereign Modular AI for Ethical, Multi-Perspective Cognition | |
| Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982) | |
| ORCID Published, Sovereign Innovation License | |
| Overview | |
| Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications. | |
| 1. Core Philosophy & Motivation | |
| Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance. | |
| Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency. | |
| Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more. | |
| 2. Architectural Modules | |
| QuantumSpiderweb | |
| Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space). | |
| Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality). | |
| # [ | |
| import numpy as np | |
| import networkx as nx | |
| import random | |
| from typing import Dict, Any | |
| class QuantumSpiderweb: | |
| """ | |
| Simulates a cognitive spiderweb architecture with dimensions: | |
| Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space) | |
| """ | |
| def __init__(self, node_count: int = 128): | |
| self.graph = nx.Graph() | |
| self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ'] | |
| self._init_nodes(node_count) | |
| self.entangled_state = {} | |
| def _init_nodes(self, count: int): | |
| for i in range(count): | |
| node_id = f"QNode_{i}" | |
| state = self._generate_state() | |
| self.graph.add_node(node_id, state=state) | |
| if i > 0: | |
| connection = f"QNode_{random.randint(0, i-1)}" | |
| self.graph.add_edge(node_id, connection, weight=random.random()) | |
| def _generate_state(self) -> Dict[str, float]: | |
| return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions} | |
| def propagate_thought(self, origin: str, depth: int = 3): | |
| """ | |
| Traverse the graph from a starting node, simulating pre-cognitive waveform | |
| """ | |
| visited = set() | |
| stack = [(origin, 0)] | |
| traversal_output = [] | |
| while stack: | |
| node, level = stack.pop() | |
| if node in visited or level > depth: | |
| continue | |
| visited.add(node) | |
| state = self.graph.nodes[node]['state'] | |
| traversal_output.append((node, state)) | |
| for neighbor in self.graph.neighbors(node): | |
| stack.append((neighbor, level + 1)) | |
| return traversal_output | |
| def detect_tension(self, node: str) -> float: | |
| """ | |
| Measures tension (instability) in the node's quantum state | |
| """ | |
| state = self.graph.nodes[node]['state'] | |
| return np.std(list(state.values())) | |
| def collapse_node(self, node: str) -> Dict[str, Any]: | |
| """ | |
| Collapse superposed thought into deterministic response | |
| """ | |
| state = self.graph.nodes[node]['state'] | |
| collapsed = {k: round(v, 2) for k, v in state.items()} | |
| self.entangled_state[node] = collapsed | |
| return collapsed | |
| if __name__ == "__main__": | |
| web = QuantumSpiderweb() | |
| root = "QNode_0" | |
| path = web.propagate_thought(root) | |
| print("Initial Propagation from:", root) | |
| for n, s in path: | |
| print(f"{n}:", s) | |
| print("\nCollapse Sample Node:") | |
| print(web.collapse_node(root))] | |
| CognitionCocooner | |
| Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted. | |
| Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted. | |
| # [ | |
| import json | |
| import os | |
| import random | |
| from typing import Union, Dict, Any | |
| from cryptography.fernet import Fernet | |
| class CognitionCocooner: | |
| def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None): | |
| self.storage_path = storage_path | |
| os.makedirs(self.storage_path, exist_ok=True) | |
| self.key = encryption_key or Fernet.generate_key() | |
| self.fernet = Fernet(self.key) | |
| def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str: | |
| cocoon = { | |
| "type": type_, | |
| "id": f"cocoon_{random.randint(1000,9999)}", | |
| "wrapped": self._generate_wrapper(thought, type_) | |
| } | |
| file_path = os.path.join(self.storage_path, cocoon["id"] + ".json") | |
| with open(file_path, "w") as f: | |
| json.dump(cocoon, f) | |
| return cocoon["id"] | |
| def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]: | |
| file_path = os.path.join(self.storage_path, cocoon_id + ".json") | |
| if not os.path.exists(file_path): | |
| raise FileNotFoundError(f"Cocoon {cocoon_id} not found.") | |
| with open(file_path, "r") as f: | |
| cocoon = json.load(f) | |
| return cocoon["wrapped"] | |
| def wrap_encrypted(self, thought: Dict[str, Any]) -> str: | |
| encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode() | |
| cocoon = { | |
| "type": "encrypted", | |
| "id": f"cocoon_{random.randint(10000,99999)}", | |
| "wrapped": encrypted | |
| } | |
| file_path = os.path.join(self.storage_path, cocoon["id"] + ".json") | |
| with open(file_path, "w") as f: | |
| json.dump(cocoon, f) | |
| return cocoon["id"] | |
| def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]: | |
| file_path = os.path.join(self.storage_path, cocoon_id + ".json") | |
| if not os.path.exists(file_path): | |
| raise FileNotFoundError(f"Cocoon {cocoon_id} not found.") | |
| with open(file_path, "r") as f: | |
| cocoon = json.load(f) | |
| decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode() | |
| return json.loads(decrypted) | |
| def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]: | |
| if type_ == "prompt": | |
| return f"What does this mean in context? {thought}" | |
| elif type_ == "function": | |
| return f"def analyze(): return {thought}" | |
| elif type_ == "symbolic": | |
| return {k: round(v, 2) for k, v in thought.items()} | |
| else: | |
| return thought] | |
| DreamReweaver | |
| Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis. | |
| # [ | |
| import os | |
| import json | |
| import random | |
| from typing import List, Dict | |
| from cognition_cocooner import CognitionCocooner | |
| class DreamReweaver: | |
| """ | |
| Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts. | |
| """ | |
| def __init__(self, cocoon_dir: str = "cocoons"): | |
| self.cocooner = CognitionCocooner(storage_path=cocoon_dir) | |
| self.dream_log = [] | |
| def generate_dream_sequence(self, limit: int = 5) -> List[str]: | |
| dream_sequence = [] | |
| cocoons = self._load_cocoons() | |
| selected = random.sample(cocoons, min(limit, len(cocoons))) | |
| for cocoon in selected: | |
| wrapped = cocoon.get("wrapped") | |
| sequence = self._interpret_cocoon(wrapped, cocoon.get("type")) | |
| self.dream_log.append(sequence) | |
| dream_sequence.append(sequence) | |
| return dream_sequence | |
| def _interpret_cocoon(self, wrapped: str, type_: str) -> str: | |
| if type_ == "prompt": | |
| return f"[DreamPrompt] {wrapped}" | |
| elif type_ == "function": | |
| return f"[DreamFunction] {wrapped}" | |
| elif type_ == "symbolic": | |
| return f"[DreamSymbol] {wrapped}" | |
| elif type_ == "encrypted": | |
| return "[Encrypted Thought Cocoon - Decryption Required]" | |
| else: | |
| return "[Unknown Dream Form]" | |
| def _load_cocoons(self) -> List[Dict]: | |
| cocoons = [] | |
| for file in os.listdir(self.cocooner.storage_path): | |
| if file.endswith(".json"): | |
| path = os.path.join(self.cocooner.storage_path, file) | |
| with open(path, "r") as f: | |
| cocoons.append(json.load(f)) | |
| return cocoons | |
| if __name__ == "__main__": | |
| dr = DreamReweaver() | |
| dreams = dr.generate_dream_sequence() | |
| print("\n".join(dreams))] | |
| 3. Reasoning Orchestration & Multi-Perspective Engine | |
| UniversalReasoning Core | |
| Loads JSON config for dynamic feature toggling | |
| Launches parallel perspective agents: | |
| Newtonian logic (‘newton_thoughts’) | |
| Da Vinci creative synthesis (‘davinci_insights’) | |
| Human Intuition | |
| Neural Network Modeling | |
| Quantum Computing thinking | |
| Resilient Kindness (emotion-driven) | |
| Mathematical Analysis | |
| Philosophical Inquiry | |
| Copilot Mode (+future custom user agents) | |
| Bias Mitigation & Psychological Layering | |
| Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities. | |
| NLP Module: | |
| Uses NLTK/VADER for advanced linguistic & sentiment analysis. | |
| # [import asyncio | |
| import json | |
| import os | |
| import logging | |
| from typing import List, Dict | |
| from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
| import nltk | |
| from nltk.tokenize import word_tokenize | |
| nltk.download('punkt', quiet=True) | |
| from perspectives import ( | |
| NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, | |
| NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, | |
| MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, | |
| BiasMitigationPerspective, PsychologicalPerspective | |
| ) | |
| from elements import Element | |
| from memory_function import MemoryHandler | |
| from dream_reweaver import DreamReweaver | |
| from cognition_cocooner import CognitionCocooner | |
| from quantum_spiderweb import QuantumSpiderweb | |
| from ethical_governance import EthicalAIGovernance | |
| def load_json_config(file_path: str) -> dict: | |
| if not os.path.exists(file_path): | |
| logging.error(f"Configuration file '{file_path}' not found.") | |
| return {} | |
| try: | |
| with open(file_path, 'r') as file: | |
| config = json.load(file) | |
| config['allow_network_calls'] = False | |
| return config | |
| except json.JSONDecodeError as e: | |
| logging.error(f"Error decoding JSON: {e}") | |
| return {} | |
| class RecognizerResult: | |
| def __init__(self, text): | |
| self.text = text | |
| class CustomRecognizer: | |
| def recognize(self, question: str): | |
| if any(name in question.lower() for name in ["hydrogen", "diamond"]): | |
| return RecognizerResult(question) | |
| return RecognizerResult(None) | |
| def get_top_intent(self, recognizer_result): | |
| return "ElementDefense" if recognizer_result.text else "None" | |
| class UniversalReasoning: | |
| def __init__(self, config): | |
| self.config = config | |
| self.perspectives = self.initialize_perspectives() | |
| self.elements = self.initialize_elements() | |
| self.recognizer = CustomRecognizer() | |
| self.sentiment_analyzer = SentimentIntensityAnalyzer() | |
| self.memory_handler = MemoryHandler() | |
| self.reweaver = DreamReweaver() | |
| self.cocooner = CognitionCocooner() | |
| self.quantum_graph = QuantumSpiderweb() | |
| self.ethical_agent = EthicalAIGovernance() | |
| def initialize_perspectives(self): | |
| perspective_map = { | |
| "newton": NewtonPerspective, | |
| "davinci": DaVinciPerspective, | |
| "human_intuition": HumanIntuitionPerspective, | |
| "neural_network": NeuralNetworkPerspective, | |
| "quantum_computing": QuantumComputingPerspective, | |
| "resilient_kindness": ResilientKindnessPerspective, | |
| "mathematical": MathematicalPerspective, | |
| "philosophical": PhilosophicalPerspective, | |
| "copilot": CopilotPerspective, | |
| "bias_mitigation": BiasMitigationPerspective, | |
| "psychological": PsychologicalPerspective | |
| } | |
| enabled = self.config.get('enabled_perspectives', list(perspective_map.keys())) | |
| return [perspective_map[name](self.config) for name in enabled if name in perspective_map] | |
| def initialize_elements(self): | |
| return [ | |
| Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"), | |
| Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability") | |
| ] | |
| async def generate_response(self, question: str) -> str: | |
| responses = [] | |
| tasks = [] | |
| for perspective in self.perspectives: | |
| if asyncio.iscoroutinefunction(perspective.generate_response): | |
| tasks.append(perspective.generate_response(question)) | |
| else: | |
| async def sync_wrapper(p=perspective): | |
| return p.generate_response(question) | |
| tasks.append(sync_wrapper()) | |
| results = await asyncio.gather(*tasks, return_exceptions=True) | |
| for result in results: | |
| if isinstance(result, Exception): | |
| logging.error(f"Perspective error: {result}") | |
| else: | |
| responses.append(result) | |
| recognizer_result = self.recognizer.recognize(question) | |
| if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense": | |
| for el in self.elements: | |
| if el.name.lower() in recognizer_result.text.lower(): | |
| responses.append(el.execute_defense_function()) | |
| sentiment = self.sentiment_analyzer.polarity_scores(question) | |
| ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.") | |
| responses.append(f"**Ethical Considerations:**\n{ethical}") | |
| final_response = "\n\n".join(responses) | |
| self.memory_handler.save(question, final_response) | |
| self.reweaver.record_dream(question, final_response) | |
| self.cocooner.wrap_and_store(final_response) | |
| return final_response | |
| ] | |
| Example Configuration JSON | |
| { | |
| "logging_enabled": true, | |
| "log_level": "INFO", | |
| "enabled_perspectives": ["newton", "human_intuition", "...etc"], | |
| "ethical_considerations": "Always act with transparency...", | |
| "enable_response_saving": true, | |
| "response_save_path": "responses.txt", | |
| "backup_responses": { | |
| "enabled": true, | |
| "backup_path": "backup_responses.txt" | |
| } | |
| } | |
| Perspective Function Mapping Example (“What is the meaning of life?”) | |
| [ | |
| {"name": "newton_thoughts", ...}, | |
| {"name": "davinci_insights", ...}, | |
| ...and so forth... | |
| ] | |
| 4. Logging & Ethics Enforcement | |
| Every layer is audit-ready: | |
| All responses saved & backed up per configuration. | |
| Explicit ethics notes appended to each output. | |
| Perspective-specific logging for future training/audit/explainability. | |
| 5. API and Extensibility | |
| The stack can be packaged as: | |
| Local/CLI interface — fast prototyping/test bench environment. | |
| REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications. | |
| SecureShell Companion Mode — diagnostic/sandboxed usage. | |
| 6. Licensing & Attribution | |
| Protected by the Sovereign Innovation clause: | |
| No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC). | |
| References incorporate materials from OpenAI / GPT-x-family per their terms. | |
| Recognized contributors: | |
| Design lead + corpus author: [Your Name / ORCID link] | |
| Acknowledgments to external reviewers and the open-source Python ecosystem. | |
| 7. Future Directions | |
| Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include: | |
| Peer-reviewed reproducibility trials (open notebook science) | |
| Physical companion prototype development (for accessibility/assistive tech) | |
| Community-governed transparency layers—a model ecosystem for next-gen ethical AI. | |