Spaces:
Runtime error
Runtime error
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
shell=True) | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from pyramid_dit import PyramidDiTForVideoGeneration | |
from diffusers.utils import load_image, export_to_video | |
from huggingface_hub import snapshot_download | |
import os | |
# Download and load the model | |
model_path = os.path.join(os.getcwd(), 'pyramid_flow_model') | |
if not os.path.exists(model_path): | |
snapshot_download("rain1011/pyramid-flow-sd3", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') | |
# Verify model files exist | |
dit_path = os.path.join(model_path, 'diffusion_transformer_768p') | |
vae_path = os.path.join(model_path, 'causal_video_vae') | |
if not os.path.exists(os.path.join(dit_path, 'diffusion_pytorch_model.safetensors')): | |
raise FileNotFoundError(f"DiT model file not found in {dit_path}") | |
if not os.path.exists(os.path.join(vae_path, 'diffusion_pytorch_model.safetensors')): | |
raise FileNotFoundError(f"VAE model file not found in {vae_path}") | |
torch.cuda.set_device(0) | |
model_dtype, torch_dtype = 'bf16', torch.bfloat16 | |
model = PyramidDiTForVideoGeneration( | |
model_path, | |
model_dtype, | |
model_variant='diffusion_transformer_768p', | |
) | |
model.vae.to("cuda") | |
model.dit.to("cuda") | |
model.text_encoder.to("cuda") | |
model.vae.enable_tiling() | |
def generate_video(prompt, height, width, duration, guidance_scale, video_guidance_scale): | |
temp = 16 if duration == "5s" else 31 | |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
frames = model.generate( | |
prompt=prompt, | |
num_inference_steps=[20, 20, 20], | |
video_num_inference_steps=[10, 10, 10], | |
height=height, | |
width=width, | |
temp=temp, | |
guidance_scale=guidance_scale, | |
video_guidance_scale=video_guidance_scale, | |
output_type="pil", | |
) | |
output_path = "generated_video.mp4" | |
export_to_video(frames, output_path, fps=24) | |
return output_path | |
def generate_video_from_image(image, prompt, video_guidance_scale): | |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | |
frames = model.generate_i2v( | |
prompt=prompt, | |
input_image=image, | |
num_inference_steps=[10, 10, 10], | |
temp=16, | |
video_guidance_scale=video_guidance_scale, | |
output_type="pil", | |
) | |
output_path = "generated_video_from_image.mp4" | |
export_to_video(frames, output_path, fps=24) | |
return output_path | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pyramid Flow Video Generation Demo") | |
with gr.Tab("Text-to-Video"): | |
with gr.Row(): | |
with gr.Column(): | |
txt_prompt = gr.Textbox(label="Prompt") | |
txt_height = gr.Slider(384, 768, value=768, step=384, label="Height") | |
txt_width = gr.Slider(640, 1280, value=1280, step=640, label="Width") | |
txt_duration = gr.Radio(["5s", "10s"], value="5s", label="Duration") | |
txt_guidance_scale = gr.Slider(1, 15, value=9, step=0.1, label="Guidance Scale") | |
txt_video_guidance_scale = gr.Slider(1, 15, value=5, step=0.1, label="Video Guidance Scale") | |
txt_generate = gr.Button("Generate Video") | |
with gr.Column(): | |
txt_output = gr.Video(label="Generated Video") | |
with gr.Tab("Image-to-Video"): | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image(type="pil", label="Input Image") | |
img_prompt = gr.Textbox(label="Prompt (optional)") | |
img_video_guidance_scale = gr.Slider(1, 15, value=4, step=0.1, label="Video Guidance Scale") | |
img_generate = gr.Button("Generate Video") | |
with gr.Column(): | |
img_output = gr.Video(label="Generated Video") | |
txt_generate.click(generate_video, | |
inputs=[txt_prompt, txt_height, txt_width, txt_duration, txt_guidance_scale, txt_video_guidance_scale], | |
outputs=txt_output) | |
img_generate.click(generate_video_from_image, | |
inputs=[img_input, img_prompt, img_video_guidance_scale], | |
outputs=img_output) | |
demo.launch() |