Multi_agent_test / agents /quality_assurance_agent.py
Rahul-8799's picture
Upload 5 files
a97c801 verified
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from langchain_core.messages import AIMessage
MODEL_REPO = "Rahul-8799/quality_assurance_stablecode"
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
torch_dtype=torch.float16,
device_map="auto"
)
def run(state: dict) -> dict:
"""Reviews UI/UX implementation and suggests improvements for better user experience"""
messages = state["messages"]
prompt = messages[-1].content
# Enhance the prompt with UI/UX quality checks
enhanced_prompt = f"""
Review the UI implementation and check for:
1. Proper spacing and alignment
2. Consistent styling and theming
3. Responsive design implementation
4. Accessibility compliance
5. Visual hierarchy
6. Component reusability
7. Performance optimization
8. Cross-browser compatibility
9. Mobile responsiveness
10. User interaction patterns
Original code: {prompt}
"""
input_ids = tokenizer(enhanced_prompt, return_tensors="pt").input_ids.to(model.device)
output_ids = model.generate(input_ids, max_new_tokens=3000)
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return {
"messages": [AIMessage(content=output)],
"chat_log": state["chat_log"] + [{"role": "Quality Assurance", "content": output}],
"qa_output": output,
}