|
import json |
|
import logging |
|
import os |
|
from functools import partial |
|
from typing import Union, Optional |
|
|
|
import torch |
|
from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX |
|
try: |
|
from torch.hub import get_dir |
|
except ImportError: |
|
from torch.hub import _get_torch_home as get_dir |
|
|
|
from timm import __version__ |
|
try: |
|
from huggingface_hub import hf_hub_url |
|
from huggingface_hub import cached_download |
|
cached_download = partial(cached_download, library_name="timm", library_version=__version__) |
|
except ImportError: |
|
hf_hub_url = None |
|
cached_download = None |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_cache_dir(child_dir=''): |
|
""" |
|
Returns the location of the directory where models are cached (and creates it if necessary). |
|
""" |
|
|
|
if os.getenv('TORCH_MODEL_ZOO'): |
|
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') |
|
|
|
hub_dir = get_dir() |
|
child_dir = () if not child_dir else (child_dir,) |
|
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) |
|
os.makedirs(model_dir, exist_ok=True) |
|
return model_dir |
|
|
|
|
|
def download_cached_file(url, check_hash=True, progress=False): |
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
cached_file = os.path.join(get_cache_dir(), filename) |
|
if not os.path.exists(cached_file): |
|
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
hash_prefix = None |
|
if check_hash: |
|
r = HASH_REGEX.search(filename) |
|
hash_prefix = r.group(1) if r else None |
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress) |
|
return cached_file |
|
|
|
|
|
def has_hf_hub(necessary=False): |
|
if hf_hub_url is None and necessary: |
|
|
|
raise RuntimeError( |
|
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') |
|
return hf_hub_url is not None |
|
|
|
|
|
def hf_split(hf_id): |
|
rev_split = hf_id.split('@') |
|
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' |
|
hf_model_id = rev_split[0] |
|
hf_revision = rev_split[-1] if len(rev_split) > 1 else None |
|
return hf_model_id, hf_revision |
|
|
|
|
|
def load_cfg_from_json(json_file: Union[str, os.PathLike]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
|
|
def _download_from_hf(model_id: str, filename: str): |
|
hf_model_id, hf_revision = hf_split(model_id) |
|
url = hf_hub_url(hf_model_id, filename, revision=hf_revision) |
|
return cached_download(url, cache_dir=get_cache_dir('hf')) |
|
|
|
|
|
def load_model_config_from_hf(model_id: str): |
|
assert has_hf_hub(True) |
|
cached_file = _download_from_hf(model_id, 'config.json') |
|
default_cfg = load_cfg_from_json(cached_file) |
|
default_cfg['hf_hub'] = model_id |
|
model_name = default_cfg.get('architecture') |
|
return default_cfg, model_name |
|
|
|
|
|
def load_state_dict_from_hf(model_id: str): |
|
assert has_hf_hub(True) |
|
cached_file = _download_from_hf(model_id, 'pytorch_model.bin') |
|
state_dict = torch.load(cached_file, map_location='cpu') |
|
return state_dict |
|
|