|
""" HRNet |
|
|
|
Copied from https://github.com/HRNet/HRNet-Image-Classification |
|
|
|
Original header: |
|
Copyright (c) Microsoft |
|
Licensed under the MIT License. |
|
Written by Bin Xiao (Bin.Xiao@microsoft.com) |
|
Modified by Ke Sun (sunk@mail.ustc.edu.cn) |
|
""" |
|
import logging |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .features import FeatureInfo |
|
from .helpers import build_model_with_cfg, default_cfg_for_features |
|
from .layers import create_classifier |
|
from .registry import register_model |
|
from .resnet import BasicBlock, Bottleneck |
|
|
|
_BN_MOMENTUM = 0.1 |
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv1', 'classifier': 'classifier', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'hrnet_w18_small': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth'), |
|
'hrnet_w18_small_v2': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth'), |
|
'hrnet_w18': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth'), |
|
'hrnet_w30': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth'), |
|
'hrnet_w32': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth'), |
|
'hrnet_w40': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth'), |
|
'hrnet_w44': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth'), |
|
'hrnet_w48': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth'), |
|
'hrnet_w64': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth'), |
|
} |
|
|
|
cfg_cls = dict( |
|
hrnet_w18_small=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(1,), |
|
NUM_CHANNELS=(32,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2), |
|
NUM_CHANNELS=(16, 32), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2, 2), |
|
NUM_CHANNELS=(16, 32, 64), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2, 2, 2), |
|
NUM_CHANNELS=(16, 32, 64, 128), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w18_small_v2=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(2,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2), |
|
NUM_CHANNELS=(18, 36), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2, 2), |
|
NUM_CHANNELS=(18, 36, 72), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=2, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(2, 2, 2, 2), |
|
NUM_CHANNELS=(18, 36, 72, 144), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w18=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(18, 36), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(18, 36, 72), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(18, 36, 72, 144), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w30=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(30, 60), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(30, 60, 120), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(30, 60, 120, 240), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w32=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(32, 64), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(32, 64, 128), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(32, 64, 128, 256), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w40=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(40, 80), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(40, 80, 160), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(40, 80, 160, 320), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w44=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(44, 88), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(44, 88, 176), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(44, 88, 176, 352), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w48=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(48, 96), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(48, 96, 192), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(48, 96, 192, 384), |
|
FUSE_METHOD='SUM', |
|
), |
|
), |
|
|
|
hrnet_w64=dict( |
|
STEM_WIDTH=64, |
|
STAGE1=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=1, |
|
BLOCK='BOTTLENECK', |
|
NUM_BLOCKS=(4,), |
|
NUM_CHANNELS=(64,), |
|
FUSE_METHOD='SUM', |
|
), |
|
STAGE2=dict( |
|
NUM_MODULES=1, |
|
NUM_BRANCHES=2, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4), |
|
NUM_CHANNELS=(64, 128), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE3=dict( |
|
NUM_MODULES=4, |
|
NUM_BRANCHES=3, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4), |
|
NUM_CHANNELS=(64, 128, 256), |
|
FUSE_METHOD='SUM' |
|
), |
|
STAGE4=dict( |
|
NUM_MODULES=3, |
|
NUM_BRANCHES=4, |
|
BLOCK='BASIC', |
|
NUM_BLOCKS=(4, 4, 4, 4), |
|
NUM_CHANNELS=(64, 128, 256, 512), |
|
FUSE_METHOD='SUM', |
|
), |
|
) |
|
) |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, |
|
num_channels, fuse_method, multi_scale_output=True): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches( |
|
num_branches, blocks, num_blocks, num_inchannels, num_channels) |
|
|
|
self.num_inchannels = num_inchannels |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches( |
|
num_branches, blocks, num_blocks, num_channels) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.fuse_act = nn.ReLU(False) |
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): |
|
error_msg = '' |
|
if num_branches != len(num_blocks): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(num_branches, len(num_blocks)) |
|
elif num_branches != len(num_channels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(num_branches, len(num_channels)) |
|
elif num_branches != len(num_inchannels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(num_branches, len(num_inchannels)) |
|
if error_msg: |
|
_logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): |
|
downsample = None |
|
if stride != 1 or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=_BN_MOMENTUM), |
|
) |
|
|
|
layers = [block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)] |
|
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
branches = [] |
|
for i in range(num_branches): |
|
branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return nn.Identity() |
|
|
|
num_branches = self.num_branches |
|
num_inchannels = self.num_inchannels |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(num_inchannels[i], momentum=_BN_MOMENTUM), |
|
nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) |
|
elif j == i: |
|
fuse_layer.append(nn.Identity()) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM))) |
|
else: |
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(num_outchannels_conv3x3, momentum=_BN_MOMENTUM), |
|
nn.ReLU(False))) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_inchannels(self): |
|
return self.num_inchannels |
|
|
|
def forward(self, x: List[torch.Tensor]): |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i, branch in enumerate(self.branches): |
|
x[i] = branch(x[i]) |
|
|
|
x_fuse = [] |
|
for i, fuse_outer in enumerate(self.fuse_layers): |
|
y = x[0] if i == 0 else fuse_outer[0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y = y + x[j] |
|
else: |
|
y = y + fuse_outer[j](x[j]) |
|
x_fuse.append(self.fuse_act(y)) |
|
|
|
return x_fuse |
|
|
|
|
|
blocks_dict = { |
|
'BASIC': BasicBlock, |
|
'BOTTLENECK': Bottleneck |
|
} |
|
|
|
|
|
class HighResolutionNet(nn.Module): |
|
|
|
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, head='classification'): |
|
super(HighResolutionNet, self).__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
|
|
stem_width = cfg['STEM_WIDTH'] |
|
self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM) |
|
self.act1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM) |
|
self.act2 = nn.ReLU(inplace=True) |
|
|
|
self.stage1_cfg = cfg['STAGE1'] |
|
num_channels = self.stage1_cfg['NUM_CHANNELS'][0] |
|
block = blocks_dict[self.stage1_cfg['BLOCK']] |
|
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] |
|
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) |
|
stage1_out_channel = block.expansion * num_channels |
|
|
|
self.stage2_cfg = cfg['STAGE2'] |
|
num_channels = self.stage2_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage2_cfg['BLOCK']] |
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) |
|
|
|
self.stage3_cfg = cfg['STAGE3'] |
|
num_channels = self.stage3_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage3_cfg['BLOCK']] |
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) |
|
|
|
self.stage4_cfg = cfg['STAGE4'] |
|
num_channels = self.stage4_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage4_cfg['BLOCK']] |
|
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True) |
|
|
|
self.head = head |
|
self.head_channels = None |
|
if head == 'classification': |
|
|
|
self.num_features = 2048 |
|
self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head(pre_stage_channels) |
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
elif head == 'incre': |
|
self.num_features = 2048 |
|
self.incre_modules, _, _ = self._make_head(pre_stage_channels, True) |
|
else: |
|
self.incre_modules = None |
|
self.num_features = 256 |
|
|
|
curr_stride = 2 |
|
|
|
self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')] |
|
for i, c in enumerate(self.head_channels if self.head_channels else num_channels): |
|
curr_stride *= 2 |
|
c = c * 4 if self.head_channels else c |
|
self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')] |
|
|
|
self.init_weights() |
|
|
|
def _make_head(self, pre_stage_channels, incre_only=False): |
|
head_block = Bottleneck |
|
self.head_channels = [32, 64, 128, 256] |
|
|
|
|
|
|
|
incre_modules = [] |
|
for i, channels in enumerate(pre_stage_channels): |
|
incre_modules.append(self._make_layer(head_block, channels, self.head_channels[i], 1, stride=1)) |
|
incre_modules = nn.ModuleList(incre_modules) |
|
if incre_only: |
|
return incre_modules, None, None |
|
|
|
|
|
downsamp_modules = [] |
|
for i in range(len(pre_stage_channels) - 1): |
|
in_channels = self.head_channels[i] * head_block.expansion |
|
out_channels = self.head_channels[i + 1] * head_block.expansion |
|
downsamp_module = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True) |
|
) |
|
downsamp_modules.append(downsamp_module) |
|
downsamp_modules = nn.ModuleList(downsamp_modules) |
|
|
|
final_layer = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=self.head_channels[3] * head_block.expansion, |
|
out_channels=self.num_features, kernel_size=1, stride=1, padding=0 |
|
), |
|
nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
return incre_modules, downsamp_modules, final_layer |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append(nn.Sequential( |
|
nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), |
|
nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True))) |
|
else: |
|
transition_layers.append(nn.Identity()) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
inchannels = num_channels_pre_layer[-1] |
|
outchannels = num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), |
|
nn.BatchNorm2d(outchannels, momentum=_BN_MOMENTUM), |
|
nn.ReLU(inplace=True))) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion, momentum=_BN_MOMENTUM), |
|
) |
|
|
|
layers = [block(inplanes, planes, stride, downsample)] |
|
inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): |
|
num_modules = layer_config['NUM_MODULES'] |
|
num_branches = layer_config['NUM_BRANCHES'] |
|
num_blocks = layer_config['NUM_BLOCKS'] |
|
num_channels = layer_config['NUM_CHANNELS'] |
|
block = blocks_dict[layer_config['BLOCK']] |
|
fuse_method = layer_config['FUSE_METHOD'] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
reset_multi_scale_output = multi_scale_output or i < num_modules - 1 |
|
modules.append(HighResolutionModule( |
|
num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output) |
|
) |
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def get_classifier(self): |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def stages(self, x) -> List[torch.Tensor]: |
|
x = self.layer1(x) |
|
|
|
xl = [t(x) for i, t in enumerate(self.transition1)] |
|
yl = self.stage2(xl) |
|
|
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition2)] |
|
yl = self.stage3(xl) |
|
|
|
xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition3)] |
|
yl = self.stage4(xl) |
|
return yl |
|
|
|
def forward_features(self, x): |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.act2(x) |
|
|
|
|
|
yl = self.stages(x) |
|
|
|
|
|
y = self.incre_modules[0](yl[0]) |
|
for i, down in enumerate(self.downsamp_modules): |
|
y = self.incre_modules[i + 1](yl[i + 1]) + down(y) |
|
y = self.final_layer(y) |
|
return y |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.global_pool(x) |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
class HighResolutionNetFeatures(HighResolutionNet): |
|
"""HighResolutionNet feature extraction |
|
|
|
The design of HRNet makes it easy to grab feature maps, this class provides a simple wrapper to do so. |
|
It would be more complicated to use the FeatureNet helpers. |
|
|
|
The `feature_location=incre` allows grabbing increased channel count features using part of the |
|
classification head. If `feature_location=''` the default HRNet features are returned. First stem |
|
conv is used for stride 2 features. |
|
""" |
|
|
|
def __init__(self, cfg, in_chans=3, num_classes=1000, global_pool='avg', drop_rate=0.0, |
|
feature_location='incre', out_indices=(0, 1, 2, 3, 4)): |
|
assert feature_location in ('incre', '') |
|
super(HighResolutionNetFeatures, self).__init__( |
|
cfg, in_chans=in_chans, num_classes=num_classes, global_pool=global_pool, |
|
drop_rate=drop_rate, head=feature_location) |
|
self.feature_info = FeatureInfo(self.feature_info, out_indices) |
|
self._out_idx = {i for i in out_indices} |
|
|
|
def forward_features(self, x): |
|
assert False, 'Not supported' |
|
|
|
def forward(self, x) -> List[torch.tensor]: |
|
out = [] |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
if 0 in self._out_idx: |
|
out.append(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.act2(x) |
|
x = self.stages(x) |
|
if self.incre_modules is not None: |
|
x = [incre(f) for f, incre in zip(x, self.incre_modules)] |
|
for i, f in enumerate(x): |
|
if i + 1 in self._out_idx: |
|
out.append(f) |
|
return out |
|
|
|
|
|
def _create_hrnet(variant, pretrained, **model_kwargs): |
|
model_cls = HighResolutionNet |
|
features_only = False |
|
kwargs_filter = None |
|
if model_kwargs.pop('features_only', False): |
|
model_cls = HighResolutionNetFeatures |
|
kwargs_filter = ('num_classes', 'global_pool') |
|
features_only = True |
|
model = build_model_with_cfg( |
|
model_cls, variant, pretrained, |
|
default_cfg=default_cfgs[variant], |
|
model_cfg=cfg_cls[variant], |
|
pretrained_strict=not features_only, |
|
kwargs_filter=kwargs_filter, |
|
**model_kwargs) |
|
if features_only: |
|
model.default_cfg = default_cfg_for_features(model.default_cfg) |
|
return model |
|
|
|
|
|
@register_model |
|
def hrnet_w18_small(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w18_small_v2(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w18(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w18', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w30(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w30', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w32(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w32', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w40(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w40', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w44(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w44', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w48(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w48', pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def hrnet_w64(pretrained=True, **kwargs): |
|
return _create_hrnet('hrnet_w64', pretrained, **kwargs) |
|
|