|
from .registry import is_model, is_model_in_modules, model_entrypoint |
|
from .helpers import load_checkpoint |
|
from .layers import set_layer_config |
|
from .hub import load_model_config_from_hf |
|
|
|
|
|
def split_model_name(model_name): |
|
model_split = model_name.split(':', 1) |
|
if len(model_split) == 1: |
|
return '', model_split[0] |
|
else: |
|
source_name, model_name = model_split |
|
assert source_name in ('timm', 'hf_hub') |
|
return source_name, model_name |
|
|
|
|
|
def safe_model_name(model_name, remove_source=True): |
|
def make_safe(name): |
|
return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_') |
|
if remove_source: |
|
model_name = split_model_name(model_name)[-1] |
|
return make_safe(model_name) |
|
|
|
|
|
def create_model( |
|
model_name, |
|
pretrained=False, |
|
checkpoint_path='', |
|
scriptable=None, |
|
exportable=None, |
|
no_jit=None, |
|
**kwargs): |
|
"""Create a model |
|
|
|
Args: |
|
model_name (str): name of model to instantiate |
|
pretrained (bool): load pretrained ImageNet-1k weights if true |
|
checkpoint_path (str): path of checkpoint to load after model is initialized |
|
scriptable (bool): set layer config so that model is jit scriptable (not working for all models yet) |
|
exportable (bool): set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet) |
|
no_jit (bool): set layer config so that model doesn't utilize jit scripted layers (so far activations only) |
|
|
|
Keyword Args: |
|
drop_rate (float): dropout rate for training (default: 0.0) |
|
global_pool (str): global pool type (default: 'avg') |
|
**: other kwargs are model specific |
|
""" |
|
source_name, model_name = split_model_name(model_name) |
|
|
|
|
|
is_efficientnet = is_model_in_modules(model_name, ['efficientnet', 'mobilenetv3']) |
|
if not is_efficientnet: |
|
kwargs.pop('bn_tf', None) |
|
kwargs.pop('bn_momentum', None) |
|
kwargs.pop('bn_eps', None) |
|
|
|
|
|
drop_connect_rate = kwargs.pop('drop_connect_rate', None) |
|
if drop_connect_rate is not None and kwargs.get('drop_path_rate', None) is None: |
|
print("WARNING: 'drop_connect' as an argument is deprecated, please use 'drop_path'." |
|
" Setting drop_path to %f." % drop_connect_rate) |
|
kwargs['drop_path_rate'] = drop_connect_rate |
|
|
|
|
|
|
|
|
|
kwargs = {k: v for k, v in kwargs.items() if v is not None} |
|
|
|
if source_name == 'hf_hub': |
|
|
|
|
|
hf_default_cfg, model_name = load_model_config_from_hf(model_name) |
|
kwargs['external_default_cfg'] = hf_default_cfg |
|
|
|
if is_model(model_name): |
|
create_fn = model_entrypoint(model_name) |
|
else: |
|
raise RuntimeError('Unknown model (%s)' % model_name) |
|
|
|
with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): |
|
model = create_fn(pretrained=pretrained, **kwargs) |
|
|
|
if checkpoint_path: |
|
load_checkpoint(model, checkpoint_path) |
|
|
|
return model |
|
|