Spaces:
Runtime error
Runtime error
import gradio as gr | |
import joblib | |
import numpy as np | |
# Load the saved model | |
model = joblib.load('best_model.pkl') | |
# Load the saved pipeline (which includes the scaler and the model) | |
pipeline = joblib.load('best_pipeline.pkl') | |
# Define the prediction function | |
def predict(input1, input2, input3, input4, input5,input6): | |
# Create a numpy array from the inputs | |
inputs = np.array([input1, input2, input3, input4, input5,input6]).reshape(1, -1) | |
# Transform the inputs using the scaler | |
inputs_scaled = pipeline.transform(inputs) | |
# Make the prediction | |
prediction = model.predict(inputs_scaled) | |
# Return the prediction and a description | |
return prediction[0], f"The predicted value is {prediction[0]:.2f}" | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=predict, # Function to call | |
inputs=[ | |
gr.Number(label="Age"), | |
gr.Number(label="Hours per day"), | |
gr.Number(label="Depression"), | |
gr.Number(label="Insomnia"), | |
gr.Number(label="OCD"), | |
gr.Number(label="BPM") | |
], | |
outputs=[ | |
gr.Number(label="Predicted Value"), | |
gr.Textbox(label="Prediction Description") | |
], | |
title="Music & Mental Health Predictor", | |
description="""This Model has been trained on this <a href="https://www.kaggle.com/datasets/catherinerasgaitis/mxmh-survey-results">Dataset</a>.""", | |
theme=gr.themes.Soft(), | |
examples=[[18,3,0,1,0,156]] | |
) | |
# Launch the interface | |
iface.launch(debug=True) |