Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
import faiss
|
7 |
+
from typing import List
|
8 |
+
from google.generativeai import GenerativeModel, configure, types
|
9 |
+
|
10 |
+
# Set up the Google API for the Gemini model
|
11 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
12 |
+
configure(api_key=GOOGLE_API_KEY)
|
13 |
+
|
14 |
+
class MyApp:
|
15 |
+
def __init__(self):
|
16 |
+
self.documents = []
|
17 |
+
self.embeddings = None
|
18 |
+
self.index = None
|
19 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
def load_pdfs(self, files):
|
22 |
+
"""Load and extract text from the provided PDF files."""
|
23 |
+
self.documents = []
|
24 |
+
for file in files:
|
25 |
+
file_path = file.name # Get the file path
|
26 |
+
doc = fitz.open(file_path) # Open the PDF using the file path
|
27 |
+
for page_num in range(len(doc)):
|
28 |
+
page = doc[page_num]
|
29 |
+
text = page.get_text()
|
30 |
+
self.documents.append({"page": page_num + 1, "content": text})
|
31 |
+
print("PDFs processed successfully.")
|
32 |
+
|
33 |
+
def build_vector_db(self):
|
34 |
+
"""Build a vector database using the content of the PDFs."""
|
35 |
+
if not self.documents:
|
36 |
+
return "No documents to process."
|
37 |
+
self.embeddings = self.model.encode(
|
38 |
+
[doc["content"] for doc in self.documents], show_progress_bar=True
|
39 |
+
)
|
40 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
41 |
+
self.index.add(np.array(self.embeddings))
|
42 |
+
return "Vector database built successfully!"
|
43 |
+
|
44 |
+
def search_documents(self, query: str, k: int = 3) -> List[str]:
|
45 |
+
"""Search for relevant documents using vector similarity."""
|
46 |
+
if not self.index:
|
47 |
+
return ["Vector database is not ready."]
|
48 |
+
query_embedding = self.model.encode([query], show_progress_bar=False)
|
49 |
+
_, I = self.index.search(np.array(query_embedding), k)
|
50 |
+
results = [self.documents[i]["content"] for i in I[0]]
|
51 |
+
return results
|
52 |
+
|
53 |
+
app = MyApp()
|
54 |
+
|
55 |
+
def upload_files(files):
|
56 |
+
app.load_pdfs(files)
|
57 |
+
return "Files uploaded and processed. Ready to build vector database."
|
58 |
+
|
59 |
+
def build_vector_db():
|
60 |
+
return app.build_vector_db()
|
61 |
+
|
62 |
+
def answer_query(query):
|
63 |
+
results = app.search_documents(query)
|
64 |
+
if not results:
|
65 |
+
return "No results found."
|
66 |
+
|
67 |
+
# Generate a response using the generative model
|
68 |
+
model = GenerativeModel("gemini-1.5-pro-latest")
|
69 |
+
generation_config = types.GenerationConfig(
|
70 |
+
temperature=0.7,
|
71 |
+
max_output_tokens=150
|
72 |
+
)
|
73 |
+
try:
|
74 |
+
response = model.generate_content(results, generation_config=generation_config)
|
75 |
+
response_text = response.text if hasattr(response, "text") else "No response generated."
|
76 |
+
except Exception as e:
|
77 |
+
response_text = f"An error occurred while generating the response: {str(e)}"
|
78 |
+
|
79 |
+
return response_text
|
80 |
+
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# 🧘♀️ **Dialectical Behaviour Therapy Chatbot**")
|
83 |
+
gr.Markdown("Upload your PDFs and interact with the content using AI.")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
upload_btn = gr.Files(label="Upload PDFs", file_types=["pdf"])
|
87 |
+
upload_status = gr.Textbox()
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
db_btn = gr.Button("Build Vector Database")
|
91 |
+
db_status = gr.Textbox()
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
query_input = gr.Textbox(label="Enter your query")
|
95 |
+
submit_btn = gr.Button("Submit")
|
96 |
+
response_display = gr.Chatbot()
|
97 |
+
|
98 |
+
upload_btn.change(upload_files, inputs=[upload_btn], outputs=[upload_status])
|
99 |
+
db_btn.click(build_vector_db, outputs=[db_status])
|
100 |
+
submit_btn.click(answer_query, inputs=[query_input], outputs=[response_display])
|
101 |
+
|
102 |
+
demo.launch()
|