Rahatara commited on
Commit
2749c38
·
verified ·
1 Parent(s): 01c5d03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -40
app.py CHANGED
@@ -1,45 +1,28 @@
1
  import gradio as gr
2
- from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
3
- from PIL import Image
4
  import numpy as np
5
- import os
6
- import zipfile
7
- import io
8
 
9
- # Image Augmentation Function
10
- def augment_images(image_files, num_duplicates):
11
- datagen = ImageDataGenerator(
12
- rotation_range=40,
13
- width_shift_range=0.2,
14
- height_shift_range=0.2,
15
- zoom_range=0.2,
16
- fill_mode='nearest')
 
 
 
 
 
 
 
 
17
 
18
- augmented_images = []
19
- for image_file in image_files:
20
- try:
21
- img = Image.open(image_file).convert('RGB')
22
- img = img.resize((256, 256))
23
- x = img_to_array(img)
24
- x = x.reshape((1,) + x.shape)
25
- i = 0
26
- for _ in datagen.flow(x, batch_size=1):
27
- i += 1
28
- augmented_images.append(x[0])
29
- if i >= num_duplicates:
30
- break
31
- except Exception as e:
32
- print(f"Error processing image: {e}")
33
 
34
- return augmented_images
35
-
36
- # Gradio UI
37
- demo = gr.Interface(
38
- fn=augment_images,
39
- inputs=gr.File(label="Upload Images", multiple=True, file_types=["jpg", "jpeg", "png"]),
40
- outputs=gr.Image(label="Augmented Images"),
41
- examples=[["images/cat.jpg"], ["images/dog.jpg"]],
42
- description="Image Augmentation App",
43
- allow_flagging=False)
44
-
45
- demo.launch()
 
1
  import gradio as gr
 
 
2
  import numpy as np
3
+ import time
 
 
4
 
5
+ def sepia(input_img, num_copies):
6
+ sepia_filter = np.array([
7
+ [0.393, 0.769, 0.189],
8
+ [0.349, 0.686, 0.168],
9
+ [0.272, 0.534, 0.131]
10
+ ])
11
+ # Normalize input image to 0-1 range
12
+ input_img = input_img / 255.0
13
+ sepia_img = np.dot(input_img[...,:3], sepia_filter.T)
14
+ sepia_img = np.clip(sepia_img, 0, 1)
15
+
16
+ # Iterate to yield multiple sepia images
17
+ for _ in range(num_copies):
18
+ # Simulating a delay for demonstration, you might not need this
19
+ time.sleep(1)
20
+ yield (sepia_img * 255).astype(np.uint8)
21
 
22
+ demo = gr.Interface(fn=sepia,
23
+ inputs=[gr.Image(), gr.Number(label="Number of Copies", default=1)],
24
+ outputs=gr.Image(type="numpy", label="Sepia Image"),
25
+ title="Sepia Tone Generator")
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ if __name__ == "__main__":
28
+ demo.launch()