Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
import random
|
5 |
-
import tempfile
|
6 |
-
import os
|
7 |
-
from zipfile import ZipFile
|
8 |
-
|
9 |
-
def apply_random_transformations(image):
|
10 |
-
# Randomly apply transformations: rotate, zoom, or add noise
|
11 |
-
transformations = [rotate_image, zoom_image, add_noise]
|
12 |
-
random.shuffle(transformations) # Shuffle to apply them in random order
|
13 |
-
|
14 |
-
for transform in transformations:
|
15 |
-
if random.choice([True, False]): # Randomly decide whether to apply this transformation
|
16 |
-
image = transform(image)
|
17 |
-
return image
|
18 |
-
|
19 |
-
def rotate_image(image):
|
20 |
-
angle = random.randint(-30, 30) # Random angle
|
21 |
-
return image.rotate(angle)
|
22 |
-
|
23 |
-
def zoom_image(image):
|
24 |
-
zoom_factor = random.uniform(0.9, 1.1) # Random zoom factor
|
25 |
-
width, height = image.size
|
26 |
-
new_width = int(width * zoom_factor)
|
27 |
-
new_height = int(height * zoom_factor)
|
28 |
-
return image.resize((new_width, new_height), Image.LANCZOS)
|
29 |
-
|
30 |
-
def add_noise(image_np):
|
31 |
-
noise = np.random.randn(*image_np.shape) * 25 # Adjust intensity as needed
|
32 |
-
noisy_image = np.clip(image_np + noise, 0, 255)
|
33 |
-
return Image.fromarray(noisy_image.astype(np.uint8))
|
34 |
|
35 |
def sepia(input_img, num_copies):
|
36 |
sepia_filter = np.array([
|
@@ -38,41 +8,21 @@ def sepia(input_img, num_copies):
|
|
38 |
[0.349, 0.686, 0.168],
|
39 |
[0.272, 0.534, 0.131]
|
40 |
])
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
sepia_img = np.dot(input_img[..., :3], sepia_filter.T)
|
46 |
-
sepia_img = np.clip(sepia_img, 0, 1) * 255
|
47 |
-
img_pil = Image.fromarray(sepia_img.astype(np.uint8))
|
48 |
-
|
49 |
-
# Apply random transformations
|
50 |
-
img_transformed = apply_random_transformations(img_pil)
|
51 |
-
sepia_imgs.append(img_transformed)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
with ZipFile(zip_path, 'w') as zipf:
|
59 |
-
for i, img in enumerate(sepia_imgs):
|
60 |
-
img_path = os.path.join(temp_dir, f"sepia_image_{i}.png")
|
61 |
-
img.save(img_path)
|
62 |
-
zipf.write(img_path, os.path.basename(img_path))
|
63 |
-
shutil.rmtree(temp_dir) # Clean up after creating the ZIP
|
64 |
-
return zip_path
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
gallery = gr.Gallery()
|
71 |
-
download_btn = gr.File()
|
72 |
-
|
73 |
-
generate_btn = gr.Button("Generate Sepia Images")
|
74 |
-
generate_btn.click(fn=sepia, inputs=[input_img, num_copies], outputs=gallery)
|
75 |
-
generate_btn.click(fn=zip_sepia_images, inputs=gallery, outputs=download_btn)
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def sepia(input_img, num_copies):
|
6 |
sepia_filter = np.array([
|
|
|
8 |
[0.349, 0.686, 0.168],
|
9 |
[0.272, 0.534, 0.131]
|
10 |
])
|
11 |
+
# Normalize input image to 0-1 range
|
12 |
+
input_img = input_img / 255.0
|
13 |
+
sepia_img = np.dot(input_img[...,:3], sepia_filter.T)
|
14 |
+
sepia_img = np.clip(sepia_img, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Iterate to yield multiple sepia images
|
17 |
+
for _ in range(num_copies):
|
18 |
+
# Simulating a delay for demonstration, you might not need this
|
19 |
+
time.sleep(1)
|
20 |
+
yield (sepia_img * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
demo = gr.Interface(fn=sepia,
|
23 |
+
inputs=[gr.Image(), gr.Number()],
|
24 |
+
outputs="image",
|
25 |
+
title="Sepia Tone Generator")
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
+
demo.launch()
|