RAGBOT / app.py
Rahatara's picture
Create app.py
780874d verified
raw
history blame
7.29 kB
from typing import Any, List, Tuple
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
import fitz
from PIL import Image
import os
import openai
# MyApp class to handle the processes
class MyApp:
def __init__(self) -> None:
self.OPENAI_API_KEY: str = None # Initialize with None
self.chain = None
self.chat_history: list = []
self.documents = None
self.file_name = None
def set_api_key(self, api_key: str):
self.OPENAI_API_KEY = api_key
openai.api_key = api_key
def process_file(self, file) -> Image.Image:
loader = PyMuPDFLoader(file.name)
self.documents = loader.load()
self.file_name = os.path.basename(file.name)
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def build_chain(self, file) -> str:
embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
pdfsearch = Chroma.from_documents(
self.documents,
embeddings,
collection_name=self.file_name,
)
self.chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True,
)
return "Vector database built successfully!"
# Function to add text to chat history
def add_text(history: List[Tuple[str, str]], text: str) -> List[Tuple[str, str]]:
if not text:
raise gr.Error("Enter text")
history.append((text, ""))
return history
# Function to get response from the model
def get_response(history, query):
if app.chain is None:
raise gr.Error("The chain has not been built yet. Please ensure the vector database is built before querying.")
try:
result = app.chain.invoke(
{"question": query, "chat_history": app.chat_history}
)
app.chat_history.append((query, result["answer"]))
source_docs = result["source_documents"]
source_texts = []
for doc in source_docs:
source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
source_texts_str = "\n\n".join(source_texts)
history[-1] = (history[-1][0], result["answer"])
return history, source_texts_str
except Exception as e:
app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!"))
return history, f"I have no information about it. Feed me knowledge, please! Error: {str(e)}"
# Function to get response for the current RAG tab
def get_response_current(history, query):
if app.chain is None:
raise gr.Error("The chain has not been built yet. Please ensure the vector database is built before querying.")
try:
result = app.chain.invoke(
{"question": query, "chat_history": app.chat_history}
)
app.chat_history.append((query, result["answer"]))
source_docs = result["source_documents"]
source_texts = []
for doc in source_docs:
source_texts.append(f"Page {doc.metadata['page'] + 1}: {doc.page_content}")
source_texts_str = "\n\n".join(source_texts)
history[-1] = (history[-1][0], result["answer"])
return history, source_texts_str
except Exception as e:
app.chat_history.append((query, "I have no information about it. Feed me knowledge, please!"))
return history, f"I have no information about it. Feed me knowledge, please! Error: {str(e)}"
# Function to render file
def render_file(file) -> Image.Image:
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
# Function to purge chat and render first page of PDF
def purge_chat_and_render_first(file) -> Image.Image:
app.chat_history = []
doc = fitz.open(file.name)
page = doc[0]
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
# Function to refresh chat
def refresh_chat():
app.chat_history = []
return []
app = MyApp()
# Function to set API key
def set_api_key(api_key):
app.set_api_key(api_key)
# Pre-process the saved PDF file after setting the API key
saved_file_path = "THEDIA1.pdf"
with open(saved_file_path, 'rb') as saved_file:
app.process_file(saved_file)
app.build_chain(saved_file)
return f"API Key set to {api_key[:4]}...{api_key[-4:]} and vector database built successfully!"
# List of determined questions
questions = [
"What is the primary goal of Dialectical Behaviour Therapy?",
"How can mindfulness help in managing emotions?",
"What are some techniques to handle distressing situations?",
"Can you explain the concept of radical acceptance?",
"How does DBT differ from other types of therapy?"
]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
gr.Markdown(
"Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility."
)
api_key_input = gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key")
api_key_btn = gr.Button("Set API Key")
api_key_status = gr.Textbox(value="API Key status", interactive=False)
api_key_btn.click(
fn=set_api_key,
inputs=[api_key_input],
outputs=[api_key_status]
)
with gr.Tab("Take a Dialectical Behaviour Therapy with Me"):
with gr.Column():
chatbot_current = gr.Chatbot(elem_id="chatbot_current")
txt_current = gr.Textbox(
show_label=False,
placeholder="Enter text and press submit",
scale=2
)
submit_btn_current = gr.Button("Submit", scale=1)
refresh_btn_current = gr.Button("Refresh Chat", scale=1)
source_texts_output_current = gr.Textbox(label="Source Texts", interactive=False)
submit_btn_current.click(
fn=add_text,
inputs=[chatbot_current, txt_current],
outputs=[chatbot_current],
queue=False,
).success(
fn=get_response_current, inputs=[chatbot_current, txt_current], outputs=[chatbot_current, source_texts_output_current]
)
refresh_btn_current.click(
fn=refresh_chat,
inputs=[],
outputs=[chatbot_current],
)
with gr.Tab("Questions"):
gr.Markdown("### Example Questions")
for question in questions:
gr.Markdown(f"- {question}")
demo.queue()
demo.launch()