RAGBOT / app.py
Rahatara's picture
Create app.py
1720c98 verified
raw
history blame
5.77 kB
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Placeholder for the app's state
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.load_pdf("THEDIA1.pdf")
self.build_vector_db()
def load_pdf(self, file_path: str) -> None:
"""Extracts text from a PDF file and stores it in the app's documents."""
doc = fitz.open(file_path)
self.documents = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"page": page_num + 1, "content": text})
print("PDF processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDF."""
model = SentenceTransformer('all-MiniLM-L6-v2')
self.embeddings = model.encode([doc["content"] for doc in self.documents])
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[str]:
"""Searches for relevant documents using vector similarity."""
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query])
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i]["content"] for i in I[0]]
return results if results else ["No relevant documents found."]
app = MyApp()
def preprocess_input(user_input: str) -> str:
"""Preprocesses user input to enhance it for better context."""
if "therapy" in user_input.lower():
return "I am looking for guidance on therapy. Can you help me with some exercises or techniques to manage my stress and emotions?"
# Add more rules as needed
return user_input
def preprocess_response(response: str) -> str:
"""Preprocesses the response to make it more polished."""
response = response.strip()
response = response.replace("\n\n", "\n")
response = response.replace(" ,", ",")
response = response.replace(" .", ".")
response = " ".join(response.split())
return response
def shorten_response(response: str) -> str:
"""Uses the Zephyr model to shorten and refine the response."""
messages = [{"role": "system", "content": "Shorten and refine this response."}, {"role": "user", "content": response}]
result = client.chat_completion(messages, max_tokens=256, temperature=0.5, top_p=0.9)
return result.choices[0].message['content'].strip()
def respond(message: str, history: List[Tuple[str, str]]):
system_message = "You are a concisely speaking empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Preprocess user input
preprocessed_message = preprocess_input(message)
messages.append({"role": "user", "content": preprocessed_message})
# RAG - Retrieve relevant documents
retrieved_docs = app.search_documents(preprocessed_message)
context = "\n".join(retrieved_docs)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
response = client.chat_completion(messages, max_tokens=1024, temperature=0.7, top_p=0.9)
response_content = "".join([choice.message['content'] for choice in response.choices if 'content' in choice.message])
polished_response = preprocess_response(response_content)
shortened_response = shorten_response(polished_response)
history.append((message, shortened_response))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# 🧘‍♀️ **Dialectical Behaviour Therapy**")
gr.Markdown(
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility."
)
chatbot = gr.Chatbot()
with gr.Row():
txt_input = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=1
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
example_questions = [
["I feel overwhelmed with work."],
["Can you guide me through a quick meditation?"],
["How do I stop worrying about things I can't control?"],
["What are some DBT skills for managing anxiety?"],
["Can you explain mindfulness in DBT?"],
["What is radical acceptance?"],
["How can I practice distress tolerance?"],
["What are some techniques to handle distressing situations?"],
["How does DBT help with emotional regulation?"],
["Can you give me an example of an interpersonal effectiveness skill?"]
]
gr.Examples(examples=example_questions, inputs=[txt_input])
submit_btn.click(respond, [txt_input, chatbot], [chatbot, txt_input])
refresh_btn.click(lambda: [], None, chatbot)
if __name__ == "__main__":
demo.launch()