|
import gradio as gr |
|
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import zipfile |
|
import io |
|
|
|
|
|
def augment_images(image_files, num_duplicates): |
|
datagen = ImageDataGenerator( |
|
rotation_range=40, |
|
width_shift_range=0.2, |
|
height_shift_range=0.2, |
|
zoom_range=0.2, |
|
fill_mode='nearest') |
|
|
|
augmented_images = [] |
|
for image_file in image_files: |
|
try: |
|
img = Image.open(image_file).convert('RGB') |
|
img = img.resize((256, 256)) |
|
x = img_to_array(img) |
|
x = x.reshape((1,) + x.shape) |
|
i = 0 |
|
for _ in datagen.flow(x, batch_size=1): |
|
i += 1 |
|
augmented_images.append(x[0]) |
|
if i >= num_duplicates: |
|
break |
|
except Exception as e: |
|
print(f"Error processing image: {e}") |
|
|
|
return augmented_images |
|
|
|
|
|
demo = gr.Interface( |
|
fn=augment_images, |
|
inputs=gr.File(label="Upload Images", multiple=True, file_types=["jpg", "jpeg", "png"]), |
|
outputs=gr.Image(label="Augmented Images"), |
|
examples=[["images/cat.jpg"], ["images/dog.jpg"]], |
|
description="Image Augmentation App", |
|
allow_flagging=False) |
|
|
|
demo.launch() |