Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- app.py +54 -0
- metadata_HR.pkl +3 -0
- metadata_Marketing.pkl +3 -0
- metadata_Sales.pkl +3 -0
- requirements.txt +5 -0
- vector_db_HR.index +0 -0
- vector_db_Marketing.index +0 -0
- vector_db_Sales.index +0 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import faiss
|
3 |
+
import pickle
|
4 |
+
from transformers import AutoTokenizer, HuggingFaceEndpoint
|
5 |
+
import os
|
6 |
+
|
7 |
+
st.title("Chatbot Interface")
|
8 |
+
|
9 |
+
# User role input
|
10 |
+
user_role = st.text_input("Enter your role (Sales, Marketing, HR)")
|
11 |
+
|
12 |
+
query = st.text_input("Enter your query")
|
13 |
+
|
14 |
+
dataset = st.selectbox("Select Dataset", ["Sales", "Marketing", "HR"])
|
15 |
+
|
16 |
+
# Load Meta-Llama model using Hugging Face Endpoint
|
17 |
+
temperature = 0.7
|
18 |
+
max_new_tokens = 150
|
19 |
+
llm = HuggingFaceEndpoint(
|
20 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
21 |
+
temperature=temperature,
|
22 |
+
max_new_tokens=max_new_tokens,
|
23 |
+
huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
|
24 |
+
)
|
25 |
+
|
26 |
+
# Retrieve relevant data from vector database
|
27 |
+
if query and dataset:
|
28 |
+
if user_role == dataset: # Simple access control
|
29 |
+
index_file = f'vector_db_{dataset}.index'
|
30 |
+
metadata_file = f'metadata_{dataset}.pkl'
|
31 |
+
|
32 |
+
if os.path.exists(index_file) and os.path.exists(metadata_file):
|
33 |
+
index = faiss.read_index(index_file)
|
34 |
+
with open(metadata_file, 'rb') as f:
|
35 |
+
metadata = pickle.load(f)
|
36 |
+
|
37 |
+
# Load pre-trained model for embeddings
|
38 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
39 |
+
query_embedding = model.encode([query])
|
40 |
+
|
41 |
+
# Search in the vector database
|
42 |
+
distances, indices = index.search(query_embedding, k=5)
|
43 |
+
|
44 |
+
results = [metadata[i] for i in indices[0]]
|
45 |
+
st.write("Results:", results)
|
46 |
+
|
47 |
+
# Use the retrieved data as context for LLM
|
48 |
+
context = " ".join(results)
|
49 |
+
response = llm(f"{context}\n\n{query}")
|
50 |
+
st.write("Chatbot:", response)
|
51 |
+
else:
|
52 |
+
st.write("No data found for the selected dataset.")
|
53 |
+
else:
|
54 |
+
st.write("Access denied: You do not have permission to access this dataset.")
|
metadata_HR.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6404ac6866a8bc54162bb4075a6769c032220f75c81dd9f30b870f6667c17372
|
3 |
+
size 3036
|
metadata_Marketing.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a4b72bdffc384e62cd66b61b00de6e9b738de97593c552691069e1c81877e08
|
3 |
+
size 1639
|
metadata_Sales.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a702a2cceb2776d899dd7ae78633917f6956cef3adc71330feb5031cf932b7a0
|
3 |
+
size 1390
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
faiss-cpu
|
3 |
+
sentence-transformers
|
4 |
+
transformers
|
5 |
+
huggingface-hub
|
vector_db_HR.index
ADDED
Binary file (3.12 kB). View file
|
|
vector_db_Marketing.index
ADDED
Binary file (3.12 kB). View file
|
|
vector_db_Sales.index
ADDED
Binary file (1.58 kB). View file
|
|