import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import streamlit as st | |
import warnings | |
warnings.filterwarnings("ignore") | |
def datu(): | |
return pd.read_csv("Rain_Forecast.csv") | |
data = datu() | |
data = data.set_index(data.Date) | |
data.drop(columns = ["Date"], inplace = True) | |
train = data.iloc[200:] | |
from statsmodels.tsa.statespace.sarimax import SARIMAX | |
forecast_model=SARIMAX(train,order=(1,1,1),seasonal_order=(1,1,1,12)) | |
forecast_model=forecast_model.fit() | |