Spaces:
Sleeping
Sleeping
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
import os | |
import argparse | |
import glob | |
import yaml | |
import numpy as np | |
import torch | |
def get_args(): | |
parser = argparse.ArgumentParser(description="average model") | |
parser.add_argument("--dst_model", required=True, help="averaged model") | |
parser.add_argument("--src_path", required=True, help="src model path for average") | |
parser.add_argument("--val_best", action="store_true", help="averaged model") | |
parser.add_argument("--num", default=5, type=int, help="nums for averaged model") | |
parser.add_argument( | |
"--min_epoch", default=0, type=int, help="min epoch used for averaging model" | |
) | |
parser.add_argument( | |
"--max_epoch", | |
default=65536, | |
type=int, | |
help="max epoch used for averaging model", | |
) | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
checkpoints = [] | |
val_scores = [] | |
if args.val_best: | |
yamls = glob.glob("{}/[!train]*.yaml".format(args.src_path)) | |
for y in yamls: | |
with open(y, "r") as f: | |
dic_yaml = yaml.load(f, Loader=yaml.FullLoader) | |
loss = dic_yaml["cv_loss"] | |
epoch = dic_yaml["epoch"] | |
if epoch >= args.min_epoch and epoch <= args.max_epoch: | |
val_scores += [[epoch, loss]] | |
val_scores = np.array(val_scores) | |
sort_idx = np.argsort(val_scores[:, -1]) | |
sorted_val_scores = val_scores[sort_idx][::1] | |
print("best val scores = " + str(sorted_val_scores[: args.num, 1])) | |
print( | |
"selected epochs = " | |
+ str(sorted_val_scores[: args.num, 0].astype(np.int64)) | |
) | |
path_list = [ | |
args.src_path + "/{}.pt".format(int(epoch)) | |
for epoch in sorted_val_scores[: args.num, 0] | |
] | |
else: | |
path_list = glob.glob("{}/[0-9]*.pt".format(args.src_path)) | |
path_list = sorted(path_list, key=os.path.getmtime) | |
path_list = path_list[-args.num :] | |
print(path_list) | |
avg = None | |
num = args.num | |
assert num == len(path_list) | |
for path in path_list: | |
print("Processing {}".format(path)) | |
states = torch.load(path, map_location=torch.device("cpu")) | |
if avg is None: | |
avg = states | |
else: | |
for k in avg.keys(): | |
avg[k] += states[k] | |
# average | |
for k in avg.keys(): | |
if avg[k] is not None: | |
# pytorch 1.6 use true_divide instead of /= | |
avg[k] = torch.true_divide(avg[k], num) | |
print("Saving to {}".format(args.dst_model)) | |
torch.save(avg, args.dst_model) | |
if __name__ == "__main__": | |
main() | |