kerzel's picture
missing )
6f1388c
import gradio as gr
import numpy as np
import pandas as pd
# our own helper tools
import clustering
import utils
import logging
logging.getLogger().setLevel(logging.INFO)
from tensorflow import keras
#image_threshold = 20
damage_sites = {}
model1_windowsize = [250,250]
#model1_threshold = 0.7
model1 = keras.models.load_model('rwthmaterials_dp800_network1_inclusion.h5')
model1.compile()
damage_classes = {3: "Martensite",2: "Interface",0:"Notch",1:"Shadowing"}
model2_windowsize = [100,100]
#model2_threshold = 0.5
model2 = keras.models.load_model('rwthmaterials_dp800_network2_damage.h5')
model2.compile()
##
## Function to do the actual damage classification
##
def damage_classification(SEM_image,image_threshold, model1_threshold, model2_threshold):
##
## clustering
##
logging.debug('---------------: clustering :=====================')
all_centroids = clustering.get_centroids(SEM_image, image_threshold=image_threshold,
fill_holes=True, filter_close_centroids=True)
for i in range(len(all_centroids)) :
key = (all_centroids[i][0],all_centroids[i][1])
damage_sites[key] = 'Not Classified'
##
## Inclusions vs the rest
##
logging.debug('---------------: prepare model 1 :=====================')
images_model1 = utils.prepare_classifier_input(SEM_image, all_centroids, window_size=model1_windowsize)
logging.debug('---------------: run model 1 :=====================')
y1_pred = model1.predict(np.asarray(images_model1, float))
logging.debug('---------------: model1 threshold :=====================')
inclusions = y1_pred[:,0].reshape(len(y1_pred),1)
inclusions = np.where(inclusions > model1_threshold)
logging.debug('---------------: model 1 update dict :=====================')
for i in range(len(inclusions[0])):
centroid_id = inclusions[0][i]
coordinates = all_centroids[centroid_id]
key = (coordinates[0], coordinates[1])
damage_sites[key] = 'Inclusion'
logging.debug('Damage sites after model 1')
logging.debug(damage_sites)
##
## Martensite cracking, etc
##
logging.debug('---------------: prepare model 2 :=====================')
centroids_model2 = []
for key, value in damage_sites.items():
if value == 'Not Classified':
coordinates = list([key[0],key[1]])
centroids_model2.append(coordinates)
logging.debug('Centroids model 2')
logging.debug(centroids_model2)
logging.debug('---------------: prepare model 2 :=====================')
images_model2 = utils.prepare_classifier_input(SEM_image, centroids_model2, window_size=model2_windowsize)
logging.debug('Images model 2')
logging.debug(images_model2)
logging.debug('---------------: run model 2 :=====================')
y2_pred = model2.predict(np.asarray(images_model2, float))
damage_index = np.asarray(y2_pred > model2_threshold).nonzero()
for i in range(len(damage_index[0])):
index = damage_index[0][i]
identified_class = damage_index[1][i]
label = damage_classes[identified_class]
coordinates = centroids_model2[index]
#print('Damage {} \t identified as {}, \t coordinates {}'.format(i, label, coordinates))
key = (coordinates[0], coordinates[1])
damage_sites[key] = label
##
## show the damage sites on the image
##
logging.debug("-----------------: final damage sites :=================")
logging.debug(damage_sites)
image_path = 'classified_damage_sites.png'
image = utils.show_boxes(SEM_image, damage_sites,
save_image=True,
image_path=image_path)
##
## export data
##
csv_path = 'classified_damage_sites.csv'
cols = ['x', 'y', 'damage_type']
data = []
for key, value in damage_sites.items():
data.append([key[0], key[1], value])
df = pd.DataFrame(columns=cols, data=data)
df.to_csv(csv_path)
return image, image_path, csv_path
## ---------------------------------------------------------------------------------------------------------------
## main app interface
## -----------------------------------------------------------------------------------------------------------------
with gr.Blocks() as app:
gr.Markdown('# Damage Classification in Dual Phase Steels')
gr.Markdown('This app classifies damage types in dual phase steels. Two models are used. The first model is used to identify inclusions in the steel. The second model is used to identify the remaining damage types: Martensite cracking, Interface Decohesion, Notch effect and Shadows.')
gr.Markdown('The models used in this app are based on the following papers:')
gr.Markdown('Kusche, C., Reclik, T., Freund, M., Al-Samman, T., Kerzel, U., & Korte-Kerzel, S. (2019). Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning. PloS one, 14(5), e0216493. [Link](https://doi.org/10.1371/journal.pone.0216493)')
#gr.Markdown('Medghalchi, S., Kusche, C. F., Karimi, E., Kerzel, U., & Korte-Kerzel, S. (2020). Damage analysis in dual-phase steel using deep learning: transfer from uniaxial to biaxial straining conditions by image data augmentation. Jom, 72, 4420-4430. [Link](https://link.springer.com/article/10.1007/s11837-020-04404-0)')
gr.Markdown('Setareh Medghalchi, Ehsan Karimi, Sang-Hyeok Lee, Benjamin Berkels, Ulrich Kerzel, Sandra Korte-Kerzel, Three-dimensional characterisation of deformation-induced damage in dual phase steel using deep learning, Materials & Design, Volume 232, 2023, 112108, ISSN 0264-1275, [link] (https://doi.org/10.1016/j.matdes.2023.112108)')
gr.Markdown('Original data and code, including the network weights, can be found at Zenodo [link](https://zenodo.org/records/8065752)')
image_input = gr.Image()
with gr.Row():
cluster_threshold_input = gr.Number(label='Cluster Threshold', value = 20,
info='Grayscale value at which a pixel is attributed to a potential damage site')
model1_threshold_input = gr.Number(label='Model 1 Threshold', value = 0.7, info='Threshold for the model identifying inclusions')
model2_threshold_input = gr.Number(label='Model 2 Threshold', value = 0.5, info='Thrshold for the model identifying the remaining damage types')
button = gr.Button("Classify")
output_image = gr.Image()
with gr.Row():
download_image = gr.DownloadButton(label='Download Image')
download_csv = gr.DownloadButton(label='Download Damage List')
button.click(damage_classification,
inputs=[image_input, cluster_threshold_input, model1_threshold_input, model2_threshold_input],
outputs=[output_image, download_image, download_csv])
# simple interface, no title, etc
# app = gr.Interface(damage_classification,
# inputs=[gr.Image(),
# gr.Number(label='Cluster Threshold', value = 20, info='Grayscale value at which a pixel is attributed to a potential damage site'),
# gr.Number(label='Model 1 Threshold', value = 0.7, info='Threshold for the model identifying inclusions'),
# gr.Number(label='Model 2 Threshold', value = 0.5, info='Thrshold for the model identifying the remaining damage types')
# ],
# outputs=[gr.Image(),
# gr.DownloadButton(label='Download Image'),
# gr.DownloadButton(label='Download Damage List')])
if __name__ == "__main__":
app.launch()