Spaces:
Sleeping
Sleeping
Add gpt4 and gpt3 reference json files
Browse files- data/mt_bench_radar.ipynb +714 -0
- data/new_output_data.csv +0 -0
data/mt_bench_radar.ipynb
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "Vp5YVvaTpIiX",
|
25 |
+
"outputId": "3c5b2a63-1fb4-430d-a986-4092ee8d4891"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"--2023-11-28 19:52:23-- https://huggingface.co/spaces/lmsys/mt-bench/resolve/main/data/mt_bench/model_judgment/gpt-4_single.jsonl\n",
|
33 |
+
"Resolving huggingface.co (huggingface.co)... 18.164.174.55, 18.164.174.23, 18.164.174.118, ...\n",
|
34 |
+
"Connecting to huggingface.co (huggingface.co)|18.164.174.55|:443... connected.\n",
|
35 |
+
"HTTP request sent, awaiting response... 302 Found\n",
|
36 |
+
"Location: https://cdn-lfs.huggingface.co/repos/12/2b/122bd8e9eccbb3acc98acf73e0ecef3c96f24dcdb5f6639074ed304eb19f9cd4/76c55033c6b2b1cc3f62513458f84748a23352495fd42b1062a7401de5ff9bd9?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27gpt-4_single.jsonl%3B+filename%3D%22gpt-4_single.jsonl%22%3B&Expires=1701460343&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMTQ2MDM0M319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy8xMi8yYi8xMjJiZDhlOWVjY2JiM2FjYzk4YWNmNzNlMGVjZWYzYzk2ZjI0ZGNkYjVmNjYzOTA3NGVkMzA0ZWIxOWY5Y2Q0Lzc2YzU1MDMzYzZiMmIxY2MzZjYyNTEzNDU4Zjg0NzQ4YTIzMzUyNDk1ZmQ0MmIxMDYyYTc0MDFkZTVmZjliZDk%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=hwTqBVlLz755xHaQaN6cSDP2FxoPBAXFcOE2uvFAYzg0Y90kGkY3A74Fj2wAkToA-dN1WJeMc%7Ef2XarD%7EbAw%7E4v2JCw9kphUxL-pcRF1uNBI2pzS-3Joff-m%7Ee3GVq5%7E8QabDfK60nWuA10CodvlaRDqVpuYEAvF2n5tY3Adf6-V-YdcaxE2DTlHXm65oJsJwWJTGiQYzTtn4rEVWKgQHVYp7CqX0IdyaILr966agOZvdUGDUZfkZtG6E9A6zKOgOBfdpJn1tjmMKEkDscDvLJvg8r9QJY7yttPHOMNVruzVtoLjpg1lFb-tXco3h%7EFZVKiOIZL%7E597WbaDu8hdZOQ__&Key-Pair-Id=KVTP0A1DKRTAX [following]\n",
|
37 |
+
"--2023-11-28 19:52:23-- https://cdn-lfs.huggingface.co/repos/12/2b/122bd8e9eccbb3acc98acf73e0ecef3c96f24dcdb5f6639074ed304eb19f9cd4/76c55033c6b2b1cc3f62513458f84748a23352495fd42b1062a7401de5ff9bd9?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27gpt-4_single.jsonl%3B+filename%3D%22gpt-4_single.jsonl%22%3B&Expires=1701460343&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMTQ2MDM0M319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy8xMi8yYi8xMjJiZDhlOWVjY2JiM2FjYzk4YWNmNzNlMGVjZWYzYzk2ZjI0ZGNkYjVmNjYzOTA3NGVkMzA0ZWIxOWY5Y2Q0Lzc2YzU1MDMzYzZiMmIxY2MzZjYyNTEzNDU4Zjg0NzQ4YTIzMzUyNDk1ZmQ0MmIxMDYyYTc0MDFkZTVmZjliZDk%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=hwTqBVlLz755xHaQaN6cSDP2FxoPBAXFcOE2uvFAYzg0Y90kGkY3A74Fj2wAkToA-dN1WJeMc%7Ef2XarD%7EbAw%7E4v2JCw9kphUxL-pcRF1uNBI2pzS-3Joff-m%7Ee3GVq5%7E8QabDfK60nWuA10CodvlaRDqVpuYEAvF2n5tY3Adf6-V-YdcaxE2DTlHXm65oJsJwWJTGiQYzTtn4rEVWKgQHVYp7CqX0IdyaILr966agOZvdUGDUZfkZtG6E9A6zKOgOBfdpJn1tjmMKEkDscDvLJvg8r9QJY7yttPHOMNVruzVtoLjpg1lFb-tXco3h%7EFZVKiOIZL%7E597WbaDu8hdZOQ__&Key-Pair-Id=KVTP0A1DKRTAX\n",
|
38 |
+
"Resolving cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)... 18.65.25.40, 18.65.25.122, 18.65.25.124, ...\n",
|
39 |
+
"Connecting to cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)|18.65.25.40|:443... connected.\n",
|
40 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
41 |
+
"Length: 20113128 (19M) [text/plain]\n",
|
42 |
+
"Saving to: ‘gpt-4_single.jsonl’\n",
|
43 |
+
"\n",
|
44 |
+
"gpt-4_single.jsonl 100%[===================>] 19.18M 25.8MB/s in 0.7s \n",
|
45 |
+
"\n",
|
46 |
+
"2023-11-28 19:52:25 (25.8 MB/s) - ‘gpt-4_single.jsonl’ saved [20113128/20113128]\n",
|
47 |
+
"\n",
|
48 |
+
"--2023-11-28 19:52:25-- https://huggingface.co/spaces/lmsys/mt-bench/resolve/main/data/mt_bench/model_judgment/gpt-4_pair.jsonl\n",
|
49 |
+
"Resolving huggingface.co (huggingface.co)... 18.164.174.55, 18.164.174.23, 18.164.174.118, ...\n",
|
50 |
+
"Connecting to huggingface.co (huggingface.co)|18.164.174.55|:443... connected.\n",
|
51 |
+
"HTTP request sent, awaiting response... 302 Found\n",
|
52 |
+
"Location: https://cdn-lfs.huggingface.co/repos/12/2b/122bd8e9eccbb3acc98acf73e0ecef3c96f24dcdb5f6639074ed304eb19f9cd4/d662c0b7d1d297f0494fcb4cc09fe8f054fa22d75deb4754a483a921984bc585?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27gpt-4_pair.jsonl%3B+filename%3D%22gpt-4_pair.jsonl%22%3B&Expires=1701460345&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMTQ2MDM0NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy8xMi8yYi8xMjJiZDhlOWVjY2JiM2FjYzk4YWNmNzNlMGVjZWYzYzk2ZjI0ZGNkYjVmNjYzOTA3NGVkMzA0ZWIxOWY5Y2Q0L2Q2NjJjMGI3ZDFkMjk3ZjA0OTRmY2I0Y2MwOWZlOGYwNTRmYTIyZDc1ZGViNDc1NGE0ODNhOTIxOTg0YmM1ODU%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=RcHQsWboSyCegZB6o-k6-9fsGpTmhArmdubGyrc7VTT2cc9FKMoPc4vHW0RtMgS%7EkYWm2eA9sfex%7EWN%7E5A0i1CBBWP3EDq365Jt52BdOw4BbOtezicyT2eLPzNkgrw3RuLMZTApHUr6md1TVm0W15rmSaUpoQT5sKcVwq%7EvmmLXr6AFOV6vWho6vEHSadzT8GJkK%7El9xOtBGhCE-pWOsEU6siX9sw0HwZBmg1mcXJzMj2du%7Em5AmG3lXsJm2fFY0ZmhSZjm7FH%7EBxF38wTuuf3gBUeJUU%7Ecx0Lv935FSAmmdzqrXO4CiGq%7EQSTp7uga8mUJikosX6DlfLMZudAIVzg__&Key-Pair-Id=KVTP0A1DKRTAX [following]\n",
|
53 |
+
"--2023-11-28 19:52:25-- https://cdn-lfs.huggingface.co/repos/12/2b/122bd8e9eccbb3acc98acf73e0ecef3c96f24dcdb5f6639074ed304eb19f9cd4/d662c0b7d1d297f0494fcb4cc09fe8f054fa22d75deb4754a483a921984bc585?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27gpt-4_pair.jsonl%3B+filename%3D%22gpt-4_pair.jsonl%22%3B&Expires=1701460345&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMTQ2MDM0NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy8xMi8yYi8xMjJiZDhlOWVjY2JiM2FjYzk4YWNmNzNlMGVjZWYzYzk2ZjI0ZGNkYjVmNjYzOTA3NGVkMzA0ZWIxOWY5Y2Q0L2Q2NjJjMGI3ZDFkMjk3ZjA0OTRmY2I0Y2MwOWZlOGYwNTRmYTIyZDc1ZGViNDc1NGE0ODNhOTIxOTg0YmM1ODU%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qIn1dfQ__&Signature=RcHQsWboSyCegZB6o-k6-9fsGpTmhArmdubGyrc7VTT2cc9FKMoPc4vHW0RtMgS%7EkYWm2eA9sfex%7EWN%7E5A0i1CBBWP3EDq365Jt52BdOw4BbOtezicyT2eLPzNkgrw3RuLMZTApHUr6md1TVm0W15rmSaUpoQT5sKcVwq%7EvmmLXr6AFOV6vWho6vEHSadzT8GJkK%7El9xOtBGhCE-pWOsEU6siX9sw0HwZBmg1mcXJzMj2du%7Em5AmG3lXsJm2fFY0ZmhSZjm7FH%7EBxF38wTuuf3gBUeJUU%7Ecx0Lv935FSAmmdzqrXO4CiGq%7EQSTp7uga8mUJikosX6DlfLMZudAIVzg__&Key-Pair-Id=KVTP0A1DKRTAX\n",
|
54 |
+
"Resolving cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)... 18.65.25.40, 18.65.25.122, 18.65.25.124, ...\n",
|
55 |
+
"Connecting to cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)|18.65.25.40|:443... connected.\n",
|
56 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
57 |
+
"Length: 48043462 (46M) [binary/octet-stream]\n",
|
58 |
+
"Saving to: ‘gpt-4_pair.jsonl’\n",
|
59 |
+
"\n",
|
60 |
+
"gpt-4_pair.jsonl 100%[===================>] 45.82M 36.0MB/s in 1.3s \n",
|
61 |
+
"\n",
|
62 |
+
"2023-11-28 19:52:27 (36.0 MB/s) - ‘gpt-4_pair.jsonl’ saved [48043462/48043462]\n",
|
63 |
+
"\n"
|
64 |
+
]
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"!wget https://huggingface.co/spaces/lmsys/mt-bench/resolve/main/data/mt_bench/model_judgment/gpt-4_single.jsonl\n",
|
69 |
+
"!wget https://huggingface.co/spaces/lmsys/mt-bench/resolve/main/data/mt_bench/model_judgment/gpt-4_pair.jsonl"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"source": [
|
75 |
+
"!pip install -U plotly kaleido"
|
76 |
+
],
|
77 |
+
"metadata": {
|
78 |
+
"colab": {
|
79 |
+
"base_uri": "https://localhost:8080/"
|
80 |
+
},
|
81 |
+
"id": "4eYlKr9RrPu2",
|
82 |
+
"outputId": "b957d1f9-0024-4c5c-eb07-dcb1a0071081"
|
83 |
+
},
|
84 |
+
"execution_count": null,
|
85 |
+
"outputs": [
|
86 |
+
{
|
87 |
+
"output_type": "stream",
|
88 |
+
"name": "stdout",
|
89 |
+
"text": [
|
90 |
+
"Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (5.15.0)\n",
|
91 |
+
"Collecting plotly\n",
|
92 |
+
" Downloading plotly-5.18.0-py3-none-any.whl (15.6 MB)\n",
|
93 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.6/15.6 MB\u001b[0m \u001b[31m27.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
94 |
+
"\u001b[?25hCollecting kaleido\n",
|
95 |
+
" Downloading kaleido-0.2.1-py2.py3-none-manylinux1_x86_64.whl (79.9 MB)\n",
|
96 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.9/79.9 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
97 |
+
"\u001b[?25hRequirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly) (8.2.3)\n",
|
98 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from plotly) (23.2)\n",
|
99 |
+
"Installing collected packages: kaleido, plotly\n",
|
100 |
+
" Attempting uninstall: plotly\n",
|
101 |
+
" Found existing installation: plotly 5.15.0\n",
|
102 |
+
" Uninstalling plotly-5.15.0:\n",
|
103 |
+
" Successfully uninstalled plotly-5.15.0\n",
|
104 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
105 |
+
"lida 0.0.10 requires fastapi, which is not installed.\n",
|
106 |
+
"lida 0.0.10 requires python-multipart, which is not installed.\n",
|
107 |
+
"lida 0.0.10 requires uvicorn, which is not installed.\u001b[0m\u001b[31m\n",
|
108 |
+
"\u001b[0mSuccessfully installed kaleido-0.2.1 plotly-5.18.0\n"
|
109 |
+
]
|
110 |
+
}
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"source": [
|
116 |
+
"import json\n",
|
117 |
+
"import pandas as pd\n",
|
118 |
+
"import plotly.express as px\n",
|
119 |
+
"import plotly.graph_objects as go\n",
|
120 |
+
"\n",
|
121 |
+
"\n",
|
122 |
+
"CATEGORIES = [\"Writing\", \"Roleplay\", \"Reasoning\", \"Math\", \"Coding\", \"Extraction\", \"STEM\", \"Humanities\"]\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"def get_model_df():\n",
|
126 |
+
" cnt = 0\n",
|
127 |
+
" q2result = []\n",
|
128 |
+
" fin = open(\"gpt-4_single.jsonl\", \"r\")\n",
|
129 |
+
" for line in fin:\n",
|
130 |
+
" obj = json.loads(line)\n",
|
131 |
+
" obj[\"category\"] = CATEGORIES[(obj[\"question_id\"]-81)//10]\n",
|
132 |
+
" q2result.append(obj)\n",
|
133 |
+
" df = pd.DataFrame(q2result)\n",
|
134 |
+
" return df\n",
|
135 |
+
"\n",
|
136 |
+
"def toggle(res_str):\n",
|
137 |
+
" if res_str == \"win\":\n",
|
138 |
+
" return \"loss\"\n",
|
139 |
+
" elif res_str == \"loss\":\n",
|
140 |
+
" return \"win\"\n",
|
141 |
+
" return \"tie\"\n",
|
142 |
+
"\n",
|
143 |
+
"def get_model_df_pair():\n",
|
144 |
+
" fin = open(\"gpt-4_pair.jsonl\", \"r\")\n",
|
145 |
+
" cnt = 0\n",
|
146 |
+
" q2result = []\n",
|
147 |
+
" for line in fin:\n",
|
148 |
+
" obj = json.loads(line)\n",
|
149 |
+
"\n",
|
150 |
+
" result = {}\n",
|
151 |
+
" result[\"qid\"] = str(obj[\"question_id\"])\n",
|
152 |
+
" result[\"turn\"] = str(obj[\"turn\"])\n",
|
153 |
+
" if obj[\"g1_winner\"] == \"model_1\" and obj[\"g2_winner\"] == \"model_1\":\n",
|
154 |
+
" result[\"result\"] = \"win\"\n",
|
155 |
+
" elif obj[\"g1_winner\"] == \"model_2\" and obj[\"g2_winner\"] == \"model_2\":\n",
|
156 |
+
" result[\"result\"] = \"loss\"\n",
|
157 |
+
" else:\n",
|
158 |
+
" result[\"result\"] = \"tie\"\n",
|
159 |
+
" result[\"category\"] = CATEGORIES[(obj[\"question_id\"]-81)//10]\n",
|
160 |
+
" result[\"model\"] = obj[\"model_1\"]\n",
|
161 |
+
" q2result.append(result)\n",
|
162 |
+
"\n",
|
163 |
+
" df = pd.DataFrame(q2result)\n",
|
164 |
+
"\n",
|
165 |
+
" return df\n",
|
166 |
+
"\n",
|
167 |
+
"df = get_model_df()\n",
|
168 |
+
"df_pair = get_model_df_pair()"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "m2tG_vDyqWZw"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"source": [
|
179 |
+
"df_pair"
|
180 |
+
],
|
181 |
+
"metadata": {
|
182 |
+
"colab": {
|
183 |
+
"base_uri": "https://localhost:8080/",
|
184 |
+
"height": 423
|
185 |
+
},
|
186 |
+
"id": "wUw1sxfmaGuK",
|
187 |
+
"outputId": "21365f64-c2fa-47c7-9ad4-ca114eac6533"
|
188 |
+
},
|
189 |
+
"execution_count": null,
|
190 |
+
"outputs": [
|
191 |
+
{
|
192 |
+
"output_type": "execute_result",
|
193 |
+
"data": {
|
194 |
+
"text/plain": [
|
195 |
+
" qid turn result category model\n",
|
196 |
+
"0 81 1 loss Writing alpaca-13b\n",
|
197 |
+
"1 81 2 loss Writing alpaca-13b\n",
|
198 |
+
"2 82 1 loss Writing alpaca-13b\n",
|
199 |
+
"3 82 2 loss Writing alpaca-13b\n",
|
200 |
+
"4 83 1 loss Writing alpaca-13b\n",
|
201 |
+
"... ... ... ... ... ...\n",
|
202 |
+
"4795 158 2 tie Humanities wizardlm-30b\n",
|
203 |
+
"4796 159 1 loss Humanities wizardlm-30b\n",
|
204 |
+
"4797 159 2 win Humanities wizardlm-30b\n",
|
205 |
+
"4798 160 1 loss Humanities wizardlm-30b\n",
|
206 |
+
"4799 160 2 tie Humanities wizardlm-30b\n",
|
207 |
+
"\n",
|
208 |
+
"[4800 rows x 5 columns]"
|
209 |
+
],
|
210 |
+
"text/html": [
|
211 |
+
"\n",
|
212 |
+
" <div id=\"df-28f6ebcf-4509-4c45-8fe3-2d64ca044a2f\" class=\"colab-df-container\">\n",
|
213 |
+
" <div>\n",
|
214 |
+
"<style scoped>\n",
|
215 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
216 |
+
" vertical-align: middle;\n",
|
217 |
+
" }\n",
|
218 |
+
"\n",
|
219 |
+
" .dataframe tbody tr th {\n",
|
220 |
+
" vertical-align: top;\n",
|
221 |
+
" }\n",
|
222 |
+
"\n",
|
223 |
+
" .dataframe thead th {\n",
|
224 |
+
" text-align: right;\n",
|
225 |
+
" }\n",
|
226 |
+
"</style>\n",
|
227 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
228 |
+
" <thead>\n",
|
229 |
+
" <tr style=\"text-align: right;\">\n",
|
230 |
+
" <th></th>\n",
|
231 |
+
" <th>qid</th>\n",
|
232 |
+
" <th>turn</th>\n",
|
233 |
+
" <th>result</th>\n",
|
234 |
+
" <th>category</th>\n",
|
235 |
+
" <th>model</th>\n",
|
236 |
+
" </tr>\n",
|
237 |
+
" </thead>\n",
|
238 |
+
" <tbody>\n",
|
239 |
+
" <tr>\n",
|
240 |
+
" <th>0</th>\n",
|
241 |
+
" <td>81</td>\n",
|
242 |
+
" <td>1</td>\n",
|
243 |
+
" <td>loss</td>\n",
|
244 |
+
" <td>Writing</td>\n",
|
245 |
+
" <td>alpaca-13b</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>1</th>\n",
|
249 |
+
" <td>81</td>\n",
|
250 |
+
" <td>2</td>\n",
|
251 |
+
" <td>loss</td>\n",
|
252 |
+
" <td>Writing</td>\n",
|
253 |
+
" <td>alpaca-13b</td>\n",
|
254 |
+
" </tr>\n",
|
255 |
+
" <tr>\n",
|
256 |
+
" <th>2</th>\n",
|
257 |
+
" <td>82</td>\n",
|
258 |
+
" <td>1</td>\n",
|
259 |
+
" <td>loss</td>\n",
|
260 |
+
" <td>Writing</td>\n",
|
261 |
+
" <td>alpaca-13b</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th>3</th>\n",
|
265 |
+
" <td>82</td>\n",
|
266 |
+
" <td>2</td>\n",
|
267 |
+
" <td>loss</td>\n",
|
268 |
+
" <td>Writing</td>\n",
|
269 |
+
" <td>alpaca-13b</td>\n",
|
270 |
+
" </tr>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <th>4</th>\n",
|
273 |
+
" <td>83</td>\n",
|
274 |
+
" <td>1</td>\n",
|
275 |
+
" <td>loss</td>\n",
|
276 |
+
" <td>Writing</td>\n",
|
277 |
+
" <td>alpaca-13b</td>\n",
|
278 |
+
" </tr>\n",
|
279 |
+
" <tr>\n",
|
280 |
+
" <th>...</th>\n",
|
281 |
+
" <td>...</td>\n",
|
282 |
+
" <td>...</td>\n",
|
283 |
+
" <td>...</td>\n",
|
284 |
+
" <td>...</td>\n",
|
285 |
+
" <td>...</td>\n",
|
286 |
+
" </tr>\n",
|
287 |
+
" <tr>\n",
|
288 |
+
" <th>4795</th>\n",
|
289 |
+
" <td>158</td>\n",
|
290 |
+
" <td>2</td>\n",
|
291 |
+
" <td>tie</td>\n",
|
292 |
+
" <td>Humanities</td>\n",
|
293 |
+
" <td>wizardlm-30b</td>\n",
|
294 |
+
" </tr>\n",
|
295 |
+
" <tr>\n",
|
296 |
+
" <th>4796</th>\n",
|
297 |
+
" <td>159</td>\n",
|
298 |
+
" <td>1</td>\n",
|
299 |
+
" <td>loss</td>\n",
|
300 |
+
" <td>Humanities</td>\n",
|
301 |
+
" <td>wizardlm-30b</td>\n",
|
302 |
+
" </tr>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <th>4797</th>\n",
|
305 |
+
" <td>159</td>\n",
|
306 |
+
" <td>2</td>\n",
|
307 |
+
" <td>win</td>\n",
|
308 |
+
" <td>Humanities</td>\n",
|
309 |
+
" <td>wizardlm-30b</td>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" <tr>\n",
|
312 |
+
" <th>4798</th>\n",
|
313 |
+
" <td>160</td>\n",
|
314 |
+
" <td>1</td>\n",
|
315 |
+
" <td>loss</td>\n",
|
316 |
+
" <td>Humanities</td>\n",
|
317 |
+
" <td>wizardlm-30b</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <th>4799</th>\n",
|
321 |
+
" <td>160</td>\n",
|
322 |
+
" <td>2</td>\n",
|
323 |
+
" <td>tie</td>\n",
|
324 |
+
" <td>Humanities</td>\n",
|
325 |
+
" <td>wizardlm-30b</td>\n",
|
326 |
+
" </tr>\n",
|
327 |
+
" </tbody>\n",
|
328 |
+
"</table>\n",
|
329 |
+
"<p>4800 rows × 5 columns</p>\n",
|
330 |
+
"</div>\n",
|
331 |
+
" <div class=\"colab-df-buttons\">\n",
|
332 |
+
"\n",
|
333 |
+
" <div class=\"colab-df-container\">\n",
|
334 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-28f6ebcf-4509-4c45-8fe3-2d64ca044a2f')\"\n",
|
335 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
336 |
+
" style=\"display:none;\">\n",
|
337 |
+
"\n",
|
338 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
339 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
340 |
+
" </svg>\n",
|
341 |
+
" </button>\n",
|
342 |
+
"\n",
|
343 |
+
" <style>\n",
|
344 |
+
" .colab-df-container {\n",
|
345 |
+
" display:flex;\n",
|
346 |
+
" gap: 12px;\n",
|
347 |
+
" }\n",
|
348 |
+
"\n",
|
349 |
+
" .colab-df-convert {\n",
|
350 |
+
" background-color: #E8F0FE;\n",
|
351 |
+
" border: none;\n",
|
352 |
+
" border-radius: 50%;\n",
|
353 |
+
" cursor: pointer;\n",
|
354 |
+
" display: none;\n",
|
355 |
+
" fill: #1967D2;\n",
|
356 |
+
" height: 32px;\n",
|
357 |
+
" padding: 0 0 0 0;\n",
|
358 |
+
" width: 32px;\n",
|
359 |
+
" }\n",
|
360 |
+
"\n",
|
361 |
+
" .colab-df-convert:hover {\n",
|
362 |
+
" background-color: #E2EBFA;\n",
|
363 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
364 |
+
" fill: #174EA6;\n",
|
365 |
+
" }\n",
|
366 |
+
"\n",
|
367 |
+
" .colab-df-buttons div {\n",
|
368 |
+
" margin-bottom: 4px;\n",
|
369 |
+
" }\n",
|
370 |
+
"\n",
|
371 |
+
" [theme=dark] .colab-df-convert {\n",
|
372 |
+
" background-color: #3B4455;\n",
|
373 |
+
" fill: #D2E3FC;\n",
|
374 |
+
" }\n",
|
375 |
+
"\n",
|
376 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
377 |
+
" background-color: #434B5C;\n",
|
378 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
379 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
380 |
+
" fill: #FFFFFF;\n",
|
381 |
+
" }\n",
|
382 |
+
" </style>\n",
|
383 |
+
"\n",
|
384 |
+
" <script>\n",
|
385 |
+
" const buttonEl =\n",
|
386 |
+
" document.querySelector('#df-28f6ebcf-4509-4c45-8fe3-2d64ca044a2f button.colab-df-convert');\n",
|
387 |
+
" buttonEl.style.display =\n",
|
388 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
389 |
+
"\n",
|
390 |
+
" async function convertToInteractive(key) {\n",
|
391 |
+
" const element = document.querySelector('#df-28f6ebcf-4509-4c45-8fe3-2d64ca044a2f');\n",
|
392 |
+
" const dataTable =\n",
|
393 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
394 |
+
" [key], {});\n",
|
395 |
+
" if (!dataTable) return;\n",
|
396 |
+
"\n",
|
397 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
398 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
399 |
+
" + ' to learn more about interactive tables.';\n",
|
400 |
+
" element.innerHTML = '';\n",
|
401 |
+
" dataTable['output_type'] = 'display_data';\n",
|
402 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
403 |
+
" const docLink = document.createElement('div');\n",
|
404 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
405 |
+
" element.appendChild(docLink);\n",
|
406 |
+
" }\n",
|
407 |
+
" </script>\n",
|
408 |
+
" </div>\n",
|
409 |
+
"\n",
|
410 |
+
"\n",
|
411 |
+
"<div id=\"df-02d34fc9-f4ca-40d7-b50a-bd1ffede5665\">\n",
|
412 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-02d34fc9-f4ca-40d7-b50a-bd1ffede5665')\"\n",
|
413 |
+
" title=\"Suggest charts\"\n",
|
414 |
+
" style=\"display:none;\">\n",
|
415 |
+
"\n",
|
416 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
417 |
+
" width=\"24px\">\n",
|
418 |
+
" <g>\n",
|
419 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
420 |
+
" </g>\n",
|
421 |
+
"</svg>\n",
|
422 |
+
" </button>\n",
|
423 |
+
"\n",
|
424 |
+
"<style>\n",
|
425 |
+
" .colab-df-quickchart {\n",
|
426 |
+
" --bg-color: #E8F0FE;\n",
|
427 |
+
" --fill-color: #1967D2;\n",
|
428 |
+
" --hover-bg-color: #E2EBFA;\n",
|
429 |
+
" --hover-fill-color: #174EA6;\n",
|
430 |
+
" --disabled-fill-color: #AAA;\n",
|
431 |
+
" --disabled-bg-color: #DDD;\n",
|
432 |
+
" }\n",
|
433 |
+
"\n",
|
434 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
435 |
+
" --bg-color: #3B4455;\n",
|
436 |
+
" --fill-color: #D2E3FC;\n",
|
437 |
+
" --hover-bg-color: #434B5C;\n",
|
438 |
+
" --hover-fill-color: #FFFFFF;\n",
|
439 |
+
" --disabled-bg-color: #3B4455;\n",
|
440 |
+
" --disabled-fill-color: #666;\n",
|
441 |
+
" }\n",
|
442 |
+
"\n",
|
443 |
+
" .colab-df-quickchart {\n",
|
444 |
+
" background-color: var(--bg-color);\n",
|
445 |
+
" border: none;\n",
|
446 |
+
" border-radius: 50%;\n",
|
447 |
+
" cursor: pointer;\n",
|
448 |
+
" display: none;\n",
|
449 |
+
" fill: var(--fill-color);\n",
|
450 |
+
" height: 32px;\n",
|
451 |
+
" padding: 0;\n",
|
452 |
+
" width: 32px;\n",
|
453 |
+
" }\n",
|
454 |
+
"\n",
|
455 |
+
" .colab-df-quickchart:hover {\n",
|
456 |
+
" background-color: var(--hover-bg-color);\n",
|
457 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
458 |
+
" fill: var(--button-hover-fill-color);\n",
|
459 |
+
" }\n",
|
460 |
+
"\n",
|
461 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
462 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
463 |
+
" background-color: var(--disabled-bg-color);\n",
|
464 |
+
" fill: var(--disabled-fill-color);\n",
|
465 |
+
" box-shadow: none;\n",
|
466 |
+
" }\n",
|
467 |
+
"\n",
|
468 |
+
" .colab-df-spinner {\n",
|
469 |
+
" border: 2px solid var(--fill-color);\n",
|
470 |
+
" border-color: transparent;\n",
|
471 |
+
" border-bottom-color: var(--fill-color);\n",
|
472 |
+
" animation:\n",
|
473 |
+
" spin 1s steps(1) infinite;\n",
|
474 |
+
" }\n",
|
475 |
+
"\n",
|
476 |
+
" @keyframes spin {\n",
|
477 |
+
" 0% {\n",
|
478 |
+
" border-color: transparent;\n",
|
479 |
+
" border-bottom-color: var(--fill-color);\n",
|
480 |
+
" border-left-color: var(--fill-color);\n",
|
481 |
+
" }\n",
|
482 |
+
" 20% {\n",
|
483 |
+
" border-color: transparent;\n",
|
484 |
+
" border-left-color: var(--fill-color);\n",
|
485 |
+
" border-top-color: var(--fill-color);\n",
|
486 |
+
" }\n",
|
487 |
+
" 30% {\n",
|
488 |
+
" border-color: transparent;\n",
|
489 |
+
" border-left-color: var(--fill-color);\n",
|
490 |
+
" border-top-color: var(--fill-color);\n",
|
491 |
+
" border-right-color: var(--fill-color);\n",
|
492 |
+
" }\n",
|
493 |
+
" 40% {\n",
|
494 |
+
" border-color: transparent;\n",
|
495 |
+
" border-right-color: var(--fill-color);\n",
|
496 |
+
" border-top-color: var(--fill-color);\n",
|
497 |
+
" }\n",
|
498 |
+
" 60% {\n",
|
499 |
+
" border-color: transparent;\n",
|
500 |
+
" border-right-color: var(--fill-color);\n",
|
501 |
+
" }\n",
|
502 |
+
" 80% {\n",
|
503 |
+
" border-color: transparent;\n",
|
504 |
+
" border-right-color: var(--fill-color);\n",
|
505 |
+
" border-bottom-color: var(--fill-color);\n",
|
506 |
+
" }\n",
|
507 |
+
" 90% {\n",
|
508 |
+
" border-color: transparent;\n",
|
509 |
+
" border-bottom-color: var(--fill-color);\n",
|
510 |
+
" }\n",
|
511 |
+
" }\n",
|
512 |
+
"</style>\n",
|
513 |
+
"\n",
|
514 |
+
" <script>\n",
|
515 |
+
" async function quickchart(key) {\n",
|
516 |
+
" const quickchartButtonEl =\n",
|
517 |
+
" document.querySelector('#' + key + ' button');\n",
|
518 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
519 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
520 |
+
" try {\n",
|
521 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
522 |
+
" 'suggestCharts', [key], {});\n",
|
523 |
+
" } catch (error) {\n",
|
524 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
525 |
+
" }\n",
|
526 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
527 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
528 |
+
" }\n",
|
529 |
+
" (() => {\n",
|
530 |
+
" let quickchartButtonEl =\n",
|
531 |
+
" document.querySelector('#df-02d34fc9-f4ca-40d7-b50a-bd1ffede5665 button');\n",
|
532 |
+
" quickchartButtonEl.style.display =\n",
|
533 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
534 |
+
" })();\n",
|
535 |
+
" </script>\n",
|
536 |
+
"</div>\n",
|
537 |
+
" </div>\n",
|
538 |
+
" </div>\n"
|
539 |
+
]
|
540 |
+
},
|
541 |
+
"metadata": {},
|
542 |
+
"execution_count": 4
|
543 |
+
}
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"cell_type": "code",
|
548 |
+
"source": [
|
549 |
+
"all_models = df[\"model\"].unique()\n",
|
550 |
+
"print(all_models)\n",
|
551 |
+
"scores_all = []\n",
|
552 |
+
"for model in all_models:\n",
|
553 |
+
" for cat in CATEGORIES:\n",
|
554 |
+
" # filter category/model, and score format error (<1% case)\n",
|
555 |
+
" res = df[(df[\"category\"]==cat) & (df[\"model\"]==model) & (df[\"score\"] >= 0)]\n",
|
556 |
+
" score = res[\"score\"].mean()\n",
|
557 |
+
"\n",
|
558 |
+
" # # pairwise result\n",
|
559 |
+
" # res_pair = df_pair[(df_pair[\"category\"]==cat) & (df_pair[\"model\"]==model)][\"result\"].value_counts()\n",
|
560 |
+
" # wincnt = res_pair[\"win\"] if \"win\" in res_pair.index else 0\n",
|
561 |
+
" # tiecnt = res_pair[\"tie\"] if \"tie\" in res_pair.index else 0\n",
|
562 |
+
" # winrate = wincnt/res_pair.sum()\n",
|
563 |
+
" # winrate_adjusted = (wincnt + tiecnt)/res_pair.sum()\n",
|
564 |
+
" # # print(winrate_adjusted)\n",
|
565 |
+
"\n",
|
566 |
+
" # scores_all.append({\"model\": model, \"category\": cat, \"score\": score, \"winrate\": winrate, \"wtrate\": winrate_adjusted})\n",
|
567 |
+
" scores_all.append({\"model\": model, \"category\": cat, \"score\": score})"
|
568 |
+
],
|
569 |
+
"metadata": {
|
570 |
+
"colab": {
|
571 |
+
"base_uri": "https://localhost:8080/"
|
572 |
+
},
|
573 |
+
"id": "MpBKLuVmqZ7O",
|
574 |
+
"outputId": "f7ea476f-dde8-4b7c-fb69-5d7d33999caf"
|
575 |
+
},
|
576 |
+
"execution_count": null,
|
577 |
+
"outputs": [
|
578 |
+
{
|
579 |
+
"output_type": "stream",
|
580 |
+
"name": "stdout",
|
581 |
+
"text": [
|
582 |
+
"['alpaca-13b' 'baize-v2-13b' 'chatglm-6b' 'claude-instant-v1' 'claude-v1'\n",
|
583 |
+
" 'dolly-v2-12b' 'falcon-40b-instruct' 'fastchat-t5-3b' 'gpt-3.5-turbo'\n",
|
584 |
+
" 'gpt-4' 'gpt4all-13b-snoozy' 'guanaco-33b' 'guanaco-65b'\n",
|
585 |
+
" 'h2ogpt-oasst-open-llama-13b' 'koala-13b' 'llama-13b' 'mpt-30b-chat'\n",
|
586 |
+
" 'mpt-30b-instruct' 'mpt-7b-chat' 'nous-hermes-13b'\n",
|
587 |
+
" 'oasst-sft-4-pythia-12b' 'oasst-sft-7-llama-30b' 'palm-2-chat-bison-001'\n",
|
588 |
+
" 'rwkv-4-raven-14b' 'stablelm-tuned-alpha-7b' 'tulu-30b' 'vicuna-13b-v1.3'\n",
|
589 |
+
" 'vicuna-33b-v1.3' 'vicuna-7b-v1.3' 'wizardlm-13b' 'wizardlm-30b'\n",
|
590 |
+
" 'Llama-2-7b-chat' 'Llama-2-13b-chat' 'Llama-2-70b-chat']\n"
|
591 |
+
]
|
592 |
+
}
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"cell_type": "code",
|
597 |
+
"source": [
|
598 |
+
"target_models = [\"Llama-2-7b-chat\", \"Llama-2-13b-chat\", \"Llama-2-70b-chat\", \"gpt-3.5-turbo\", \"claude-v1\", \"gpt-4\"]\n",
|
599 |
+
"\n",
|
600 |
+
"scores_target = [scores_all[i] for i in range(len(scores_all)) if scores_all[i][\"model\"] in target_models]\n",
|
601 |
+
"\n",
|
602 |
+
"# sort by target_models\n",
|
603 |
+
"scores_target = sorted(scores_target, key=lambda x: target_models.index(x[\"model\"]), reverse=True)\n",
|
604 |
+
"\n",
|
605 |
+
"df_score = pd.DataFrame(scores_target)\n",
|
606 |
+
"df_score = df_score[df_score[\"model\"].isin(target_models)]\n",
|
607 |
+
"\n",
|
608 |
+
"rename_map = {\"llama-13b\": \"LLaMA-13B\",\n",
|
609 |
+
" \"alpaca-13b\": \"Alpaca-13B\",\n",
|
610 |
+
" \"vicuna-33b-v1.3\": \"Vicuna-33B\",\n",
|
611 |
+
" \"vicuna-13b-v1.3\": \"Vicuna-13B\",\n",
|
612 |
+
" \"gpt-3.5-turbo\": \"GPT-3.5-turbo\",\n",
|
613 |
+
" \"claude-v1\": \"Claude-v1\",\n",
|
614 |
+
" \"gpt-4\": \"GPT-4\"}\n",
|
615 |
+
"\n",
|
616 |
+
"for k, v in rename_map.items():\n",
|
617 |
+
" df_score.replace(k, v, inplace=True)\n",
|
618 |
+
"\n",
|
619 |
+
"fig = px.line_polar(df_score, r = 'score', theta = 'category', line_close = True, category_orders = {\"category\": CATEGORIES},\n",
|
620 |
+
" color = 'model', markers=True, color_discrete_sequence=px.colors.qualitative.Pastel)\n",
|
621 |
+
"\n",
|
622 |
+
"fig.show()"
|
623 |
+
],
|
624 |
+
"metadata": {
|
625 |
+
"colab": {
|
626 |
+
"base_uri": "https://localhost:8080/",
|
627 |
+
"height": 542
|
628 |
+
},
|
629 |
+
"id": "5i8R0l-XqkgO",
|
630 |
+
"outputId": "10151ab6-cf3d-4162-a0cf-c510f2e3968a"
|
631 |
+
},
|
632 |
+
"execution_count": null,
|
633 |
+
"outputs": [
|
634 |
+
{
|
635 |
+
"output_type": "display_data",
|
636 |
+
"data": {
|
637 |
+
"text/html": [
|
638 |
+
"<html>\n",
|
639 |
+
"<head><meta charset=\"utf-8\" /></head>\n",
|
640 |
+
"<body>\n",
|
641 |
+
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
|
642 |
+
" <script charset=\"utf-8\" src=\"https://cdn.plot.ly/plotly-2.27.0.min.js\"></script> <div id=\"7d62e79f-72ea-4c66-9a41-d7c4c2f7d741\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"7d62e79f-72ea-4c66-9a41-d7c4c2f7d741\")) { Plotly.newPlot( \"7d62e79f-72ea-4c66-9a41-d7c4c2f7d741\", [{\"hovertemplate\":\"model=GPT-4\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"GPT-4\",\"line\":{\"color\":\"rgb(102, 197, 204)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"GPT-4\",\"r\":[9.65,8.9,9.0,6.8,8.55,9.375,9.7,9.95,9.65],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"},{\"hovertemplate\":\"model=Claude-v1\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"Claude-v1\",\"line\":{\"color\":\"rgb(246, 207, 113)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Claude-v1\",\"r\":[9.5,8.5,5.95,4.8,6.25,8.8,9.7,9.7,9.5],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"},{\"hovertemplate\":\"model=GPT-3.5-turbo\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"GPT-3.5-turbo\",\"line\":{\"color\":\"rgb(248, 156, 116)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"GPT-3.5-turbo\",\"r\":[9.2,8.4,5.65,6.3,6.9,8.85,8.7,9.55,9.2],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"},{\"hovertemplate\":\"model=Llama-2-70b-chat\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"Llama-2-70b-chat\",\"line\":{\"color\":\"rgb(220, 176, 242)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Llama-2-70b-chat\",\"r\":[9.3,7.5,5.8,3.3,3.15,7.25,8.925,9.625,9.3],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"},{\"hovertemplate\":\"model=Llama-2-13b-chat\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"Llama-2-13b-chat\",\"line\":{\"color\":\"rgb(135, 197, 95)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Llama-2-13b-chat\",\"r\":[8.85,7.5,5.1,3.45,3.0,6.925,8.625,9.75,8.85],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"},{\"hovertemplate\":\"model=Llama-2-7b-chat\\u003cbr\\u003escore=%{r}\\u003cbr\\u003ecategory=%{theta}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"Llama-2-7b-chat\",\"line\":{\"color\":\"rgb(158, 185, 243)\",\"dash\":\"solid\"},\"marker\":{\"symbol\":\"circle\"},\"mode\":\"markers+lines\",\"name\":\"Llama-2-7b-chat\",\"r\":[8.9,7.7,4.25,2.4,3.0,6.5,8.65,8.75,8.9],\"showlegend\":true,\"subplot\":\"polar\",\"theta\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\",\"Writing\"],\"type\":\"scatterpolar\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"polar\":{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"angularaxis\":{\"direction\":\"clockwise\",\"rotation\":90,\"categoryorder\":\"array\",\"categoryarray\":[\"Writing\",\"Roleplay\",\"Reasoning\",\"Math\",\"Coding\",\"Extraction\",\"STEM\",\"Humanities\"]}},\"legend\":{\"title\":{\"text\":\"model\"},\"tracegroupgap\":0},\"margin\":{\"t\":60}}, {\"responsive\": true} ).then(function(){\n",
|
643 |
+
" \n",
|
644 |
+
"var gd = document.getElementById('7d62e79f-72ea-4c66-9a41-d7c4c2f7d741');\n",
|
645 |
+
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
646 |
+
" var display = window.getComputedStyle(gd).display;\n",
|
647 |
+
" if (!display || display === 'none') {{\n",
|
648 |
+
" console.log([gd, 'removed!']);\n",
|
649 |
+
" Plotly.purge(gd);\n",
|
650 |
+
" observer.disconnect();\n",
|
651 |
+
" }}\n",
|
652 |
+
"}});\n",
|
653 |
+
"\n",
|
654 |
+
"// Listen for the removal of the full notebook cells\n",
|
655 |
+
"var notebookContainer = gd.closest('#notebook-container');\n",
|
656 |
+
"if (notebookContainer) {{\n",
|
657 |
+
" x.observe(notebookContainer, {childList: true});\n",
|
658 |
+
"}}\n",
|
659 |
+
"\n",
|
660 |
+
"// Listen for the clearing of the current output cell\n",
|
661 |
+
"var outputEl = gd.closest('.output');\n",
|
662 |
+
"if (outputEl) {{\n",
|
663 |
+
" x.observe(outputEl, {childList: true});\n",
|
664 |
+
"}}\n",
|
665 |
+
"\n",
|
666 |
+
" }) }; </script> </div>\n",
|
667 |
+
"</body>\n",
|
668 |
+
"</html>"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
"metadata": {}
|
672 |
+
}
|
673 |
+
]
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"cell_type": "code",
|
677 |
+
"source": [
|
678 |
+
"# fig = px.line_polar(df_score, r = 'wtrate', theta = 'category', line_close = True, category_orders = {\"category\": CATEGORIES},\n",
|
679 |
+
"# color = 'model', markers=True, color_discrete_sequence=px.colors.qualitative.Pastel)\n",
|
680 |
+
"# fig.show()"
|
681 |
+
],
|
682 |
+
"metadata": {
|
683 |
+
"id": "MaBaUN4IqvJI"
|
684 |
+
},
|
685 |
+
"execution_count": null,
|
686 |
+
"outputs": []
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"cell_type": "code",
|
690 |
+
"source": [
|
691 |
+
"fig.update_layout(\n",
|
692 |
+
" font=dict(\n",
|
693 |
+
" size=18,\n",
|
694 |
+
" ),\n",
|
695 |
+
")\n",
|
696 |
+
"fig.write_image(\"fig.png\", width=800, height=600, scale=2)"
|
697 |
+
],
|
698 |
+
"metadata": {
|
699 |
+
"id": "4l1bzYM2bgDW"
|
700 |
+
},
|
701 |
+
"execution_count": null,
|
702 |
+
"outputs": []
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"source": [],
|
707 |
+
"metadata": {
|
708 |
+
"id": "nfpERnxFANhV"
|
709 |
+
},
|
710 |
+
"execution_count": null,
|
711 |
+
"outputs": []
|
712 |
+
}
|
713 |
+
]
|
714 |
+
}
|
data/new_output_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|