RUSH-miaomi commited on
Commit
d2935ee
1 Parent(s): 94aaff9

Upload 28 files

Browse files
text/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text.symbols import *
2
+
3
+
4
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
5
+
6
+
7
+ def cleaned_text_to_sequence(cleaned_text, tones, language):
8
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
9
+ Args:
10
+ text: string to convert to a sequence
11
+ Returns:
12
+ List of integers corresponding to the symbols in the text
13
+ """
14
+ phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
15
+ tone_start = language_tone_start_map[language]
16
+ tones = [i + tone_start for i in tones]
17
+ lang_id = language_id_map[language]
18
+ lang_ids = [lang_id for i in phones]
19
+ return phones, tones, lang_ids
20
+
21
+
22
+ def get_bert(norm_text, word2ph, language, device):
23
+ from .chinese_bert import get_bert_feature as zh_bert
24
+ from .english_bert_mock import get_bert_feature as en_bert
25
+ from .japanese_bert import get_bert_feature as jp_bert
26
+
27
+ lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
28
+ bert = lang_bert_func_map[language](norm_text, word2ph, device)
29
+ return bert
text/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (2.23 kB). View file
 
text/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (1.6 kB). View file
 
text/__pycache__/chinese.cpython-311.pyc ADDED
Binary file (8.63 kB). View file
 
text/__pycache__/chinese.cpython-38.pyc ADDED
Binary file (4.54 kB). View file
 
text/__pycache__/chinese_bert.cpython-311.pyc ADDED
Binary file (3.32 kB). View file
 
text/__pycache__/cleaner.cpython-311.pyc ADDED
Binary file (1.53 kB). View file
 
text/__pycache__/cleaner.cpython-38.pyc ADDED
Binary file (969 Bytes). View file
 
text/__pycache__/english_bert_mock.cpython-311.pyc ADDED
Binary file (449 Bytes). View file
 
text/__pycache__/japanese.cpython-311.pyc ADDED
Binary file (19 kB). View file
 
text/__pycache__/japanese.cpython-38.pyc ADDED
Binary file (14 kB). View file
 
text/__pycache__/japanese_bert.cpython-311.pyc ADDED
Binary file (2.31 kB). View file
 
text/__pycache__/symbols.cpython-311.pyc ADDED
Binary file (2.05 kB). View file
 
text/__pycache__/symbols.cpython-38.pyc ADDED
Binary file (1.85 kB). View file
 
text/__pycache__/tone_sandhi.cpython-311.pyc ADDED
Binary file (22.9 kB). View file
 
text/__pycache__/tone_sandhi.cpython-38.pyc ADDED
Binary file (15.6 kB). View file
 
text/chinese.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
+ import cn2an
5
+ from pypinyin import lazy_pinyin, Style
6
+
7
+ from text.symbols import punctuation
8
+ from text.tone_sandhi import ToneSandhi
9
+
10
+ current_file_path = os.path.dirname(__file__)
11
+ pinyin_to_symbol_map = {
12
+ line.split("\t")[0]: line.strip().split("\t")[1]
13
+ for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
14
+ }
15
+
16
+ import jieba.posseg as psg
17
+
18
+
19
+ rep_map = {
20
+ ":": ",",
21
+ ";": ",",
22
+ ",": ",",
23
+ "。": ".",
24
+ "!": "!",
25
+ "?": "?",
26
+ "\n": ".",
27
+ "·": ",",
28
+ "、": ",",
29
+ "...": "…",
30
+ "$": ".",
31
+ "“": "'",
32
+ "”": "'",
33
+ "‘": "'",
34
+ "’": "'",
35
+ "(": "'",
36
+ ")": "'",
37
+ "(": "'",
38
+ ")": "'",
39
+ "《": "'",
40
+ "》": "'",
41
+ "【": "'",
42
+ "】": "'",
43
+ "[": "'",
44
+ "]": "'",
45
+ "—": "-",
46
+ "~": "-",
47
+ "~": "-",
48
+ "「": "'",
49
+ "」": "'",
50
+ }
51
+
52
+ tone_modifier = ToneSandhi()
53
+
54
+
55
+ def replace_punctuation(text):
56
+ text = text.replace("嗯", "恩").replace("呣", "母")
57
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
58
+
59
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
60
+
61
+ replaced_text = re.sub(
62
+ r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
63
+ )
64
+
65
+ return replaced_text
66
+
67
+
68
+ def g2p(text):
69
+ pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
70
+ sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
71
+ phones, tones, word2ph = _g2p(sentences)
72
+ assert sum(word2ph) == len(phones)
73
+ assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
74
+ phones = ["_"] + phones + ["_"]
75
+ tones = [0] + tones + [0]
76
+ word2ph = [1] + word2ph + [1]
77
+ return phones, tones, word2ph
78
+
79
+
80
+ def _get_initials_finals(word):
81
+ initials = []
82
+ finals = []
83
+ orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
84
+ orig_finals = lazy_pinyin(
85
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
86
+ )
87
+ for c, v in zip(orig_initials, orig_finals):
88
+ initials.append(c)
89
+ finals.append(v)
90
+ return initials, finals
91
+
92
+
93
+ def _g2p(segments):
94
+ phones_list = []
95
+ tones_list = []
96
+ word2ph = []
97
+ for seg in segments:
98
+ # Replace all English words in the sentence
99
+ seg = re.sub("[a-zA-Z]+", "", seg)
100
+ seg_cut = psg.lcut(seg)
101
+ initials = []
102
+ finals = []
103
+ seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
104
+ for word, pos in seg_cut:
105
+ if pos == "eng":
106
+ continue
107
+ sub_initials, sub_finals = _get_initials_finals(word)
108
+ sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
109
+ initials.append(sub_initials)
110
+ finals.append(sub_finals)
111
+
112
+ # assert len(sub_initials) == len(sub_finals) == len(word)
113
+ initials = sum(initials, [])
114
+ finals = sum(finals, [])
115
+ #
116
+ for c, v in zip(initials, finals):
117
+ raw_pinyin = c + v
118
+ # NOTE: post process for pypinyin outputs
119
+ # we discriminate i, ii and iii
120
+ if c == v:
121
+ assert c in punctuation
122
+ phone = [c]
123
+ tone = "0"
124
+ word2ph.append(1)
125
+ else:
126
+ v_without_tone = v[:-1]
127
+ tone = v[-1]
128
+
129
+ pinyin = c + v_without_tone
130
+ assert tone in "12345"
131
+
132
+ if c:
133
+ # 多音节
134
+ v_rep_map = {
135
+ "uei": "ui",
136
+ "iou": "iu",
137
+ "uen": "un",
138
+ }
139
+ if v_without_tone in v_rep_map.keys():
140
+ pinyin = c + v_rep_map[v_without_tone]
141
+ else:
142
+ # 单音节
143
+ pinyin_rep_map = {
144
+ "ing": "ying",
145
+ "i": "yi",
146
+ "in": "yin",
147
+ "u": "wu",
148
+ }
149
+ if pinyin in pinyin_rep_map.keys():
150
+ pinyin = pinyin_rep_map[pinyin]
151
+ else:
152
+ single_rep_map = {
153
+ "v": "yu",
154
+ "e": "e",
155
+ "i": "y",
156
+ "u": "w",
157
+ }
158
+ if pinyin[0] in single_rep_map.keys():
159
+ pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
160
+
161
+ assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
162
+ phone = pinyin_to_symbol_map[pinyin].split(" ")
163
+ word2ph.append(len(phone))
164
+
165
+ phones_list += phone
166
+ tones_list += [int(tone)] * len(phone)
167
+ return phones_list, tones_list, word2ph
168
+
169
+
170
+ def text_normalize(text):
171
+ numbers = re.findall(r"\d+(?:\.?\d+)?", text)
172
+ for number in numbers:
173
+ text = text.replace(number, cn2an.an2cn(number), 1)
174
+ text = replace_punctuation(text)
175
+ return text
176
+
177
+
178
+ def get_bert_feature(text, word2ph):
179
+ from text import chinese_bert
180
+
181
+ return chinese_bert.get_bert_feature(text, word2ph)
182
+
183
+
184
+ if __name__ == "__main__":
185
+ from text.chinese_bert import get_bert_feature
186
+
187
+ text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
188
+ text = text_normalize(text)
189
+ print(text)
190
+ phones, tones, word2ph = g2p(text)
191
+ bert = get_bert_feature(text, word2ph)
192
+
193
+ print(phones, tones, word2ph, bert.shape)
194
+
195
+
196
+ # # 示例用法
197
+ # text = "这是一个示例文本:,你好!这是一个测试...."
198
+ # print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
text/chinese_bert.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
6
+
7
+
8
+ def get_bert_feature(text, word2ph, device=None):
9
+ if (
10
+ sys.platform == "darwin"
11
+ and torch.backends.mps.is_available()
12
+ and device == "cpu"
13
+ ):
14
+ device = "mps"
15
+ if not device:
16
+ device = "cuda"
17
+ model = AutoModelForMaskedLM.from_pretrained(
18
+ "./bert/chinese-roberta-wwm-ext-large"
19
+ ).to(device)
20
+ with torch.no_grad():
21
+ inputs = tokenizer(text, return_tensors="pt")
22
+ for i in inputs:
23
+ inputs[i] = inputs[i].to(device)
24
+ res = model(**inputs, output_hidden_states=True)
25
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
26
+
27
+ assert len(word2ph) == len(text) + 2
28
+ word2phone = word2ph
29
+ phone_level_feature = []
30
+ for i in range(len(word2phone)):
31
+ repeat_feature = res[i].repeat(word2phone[i], 1)
32
+ phone_level_feature.append(repeat_feature)
33
+
34
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
35
+
36
+ return phone_level_feature.T
37
+
38
+
39
+ if __name__ == "__main__":
40
+ import torch
41
+
42
+ word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
43
+ word2phone = [
44
+ 1,
45
+ 2,
46
+ 1,
47
+ 2,
48
+ 2,
49
+ 1,
50
+ 2,
51
+ 2,
52
+ 1,
53
+ 2,
54
+ 2,
55
+ 1,
56
+ 2,
57
+ 2,
58
+ 2,
59
+ 2,
60
+ 2,
61
+ 1,
62
+ 1,
63
+ 2,
64
+ 2,
65
+ 1,
66
+ 2,
67
+ 2,
68
+ 2,
69
+ 2,
70
+ 1,
71
+ 2,
72
+ 2,
73
+ 2,
74
+ 2,
75
+ 2,
76
+ 1,
77
+ 2,
78
+ 2,
79
+ 2,
80
+ 2,
81
+ 1,
82
+ ]
83
+
84
+ # 计算总帧数
85
+ total_frames = sum(word2phone)
86
+ print(word_level_feature.shape)
87
+ print(word2phone)
88
+ phone_level_feature = []
89
+ for i in range(len(word2phone)):
90
+ print(word_level_feature[i].shape)
91
+
92
+ # 对每个词重复word2phone[i]次
93
+ repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
94
+ phone_level_feature.append(repeat_feature)
95
+
96
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
97
+ print(phone_level_feature.shape) # torch.Size([36, 1024])
text/cleaner.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text import chinese, japanese, cleaned_text_to_sequence
2
+
3
+
4
+ language_module_map = {"ZH": chinese, "JP": japanese}
5
+
6
+
7
+ def clean_text(text, language):
8
+ language_module = language_module_map[language]
9
+ norm_text = language_module.text_normalize(text)
10
+ phones, tones, word2ph = language_module.g2p(norm_text)
11
+ return norm_text, phones, tones, word2ph
12
+
13
+
14
+ def clean_text_bert(text, language):
15
+ language_module = language_module_map[language]
16
+ norm_text = language_module.text_normalize(text)
17
+ phones, tones, word2ph = language_module.g2p(norm_text)
18
+ bert = language_module.get_bert_feature(norm_text, word2ph)
19
+ return phones, tones, bert
20
+
21
+
22
+ def text_to_sequence(text, language):
23
+ norm_text, phones, tones, word2ph = clean_text(text, language)
24
+ return cleaned_text_to_sequence(phones, tones, language)
25
+
26
+
27
+ if __name__ == "__main__":
28
+ pass
text/cmudict.rep ADDED
The diff for this file is too large to render. See raw diff
 
text/cmudict_cache.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
3
+ size 6212655
text/english.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import os
3
+ import re
4
+ from g2p_en import G2p
5
+
6
+ from text import symbols
7
+
8
+ current_file_path = os.path.dirname(__file__)
9
+ CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
10
+ CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
11
+ _g2p = G2p()
12
+
13
+ arpa = {
14
+ "AH0",
15
+ "S",
16
+ "AH1",
17
+ "EY2",
18
+ "AE2",
19
+ "EH0",
20
+ "OW2",
21
+ "UH0",
22
+ "NG",
23
+ "B",
24
+ "G",
25
+ "AY0",
26
+ "M",
27
+ "AA0",
28
+ "F",
29
+ "AO0",
30
+ "ER2",
31
+ "UH1",
32
+ "IY1",
33
+ "AH2",
34
+ "DH",
35
+ "IY0",
36
+ "EY1",
37
+ "IH0",
38
+ "K",
39
+ "N",
40
+ "W",
41
+ "IY2",
42
+ "T",
43
+ "AA1",
44
+ "ER1",
45
+ "EH2",
46
+ "OY0",
47
+ "UH2",
48
+ "UW1",
49
+ "Z",
50
+ "AW2",
51
+ "AW1",
52
+ "V",
53
+ "UW2",
54
+ "AA2",
55
+ "ER",
56
+ "AW0",
57
+ "UW0",
58
+ "R",
59
+ "OW1",
60
+ "EH1",
61
+ "ZH",
62
+ "AE0",
63
+ "IH2",
64
+ "IH",
65
+ "Y",
66
+ "JH",
67
+ "P",
68
+ "AY1",
69
+ "EY0",
70
+ "OY2",
71
+ "TH",
72
+ "HH",
73
+ "D",
74
+ "ER0",
75
+ "CH",
76
+ "AO1",
77
+ "AE1",
78
+ "AO2",
79
+ "OY1",
80
+ "AY2",
81
+ "IH1",
82
+ "OW0",
83
+ "L",
84
+ "SH",
85
+ }
86
+
87
+
88
+ def post_replace_ph(ph):
89
+ rep_map = {
90
+ ":": ",",
91
+ ";": ",",
92
+ ",": ",",
93
+ "。": ".",
94
+ "!": "!",
95
+ "?": "?",
96
+ "\n": ".",
97
+ "·": ",",
98
+ "、": ",",
99
+ "...": "…",
100
+ "v": "V",
101
+ }
102
+ if ph in rep_map.keys():
103
+ ph = rep_map[ph]
104
+ if ph in symbols:
105
+ return ph
106
+ if ph not in symbols:
107
+ ph = "UNK"
108
+ return ph
109
+
110
+
111
+ def read_dict():
112
+ g2p_dict = {}
113
+ start_line = 49
114
+ with open(CMU_DICT_PATH) as f:
115
+ line = f.readline()
116
+ line_index = 1
117
+ while line:
118
+ if line_index >= start_line:
119
+ line = line.strip()
120
+ word_split = line.split(" ")
121
+ word = word_split[0]
122
+
123
+ syllable_split = word_split[1].split(" - ")
124
+ g2p_dict[word] = []
125
+ for syllable in syllable_split:
126
+ phone_split = syllable.split(" ")
127
+ g2p_dict[word].append(phone_split)
128
+
129
+ line_index = line_index + 1
130
+ line = f.readline()
131
+
132
+ return g2p_dict
133
+
134
+
135
+ def cache_dict(g2p_dict, file_path):
136
+ with open(file_path, "wb") as pickle_file:
137
+ pickle.dump(g2p_dict, pickle_file)
138
+
139
+
140
+ def get_dict():
141
+ if os.path.exists(CACHE_PATH):
142
+ with open(CACHE_PATH, "rb") as pickle_file:
143
+ g2p_dict = pickle.load(pickle_file)
144
+ else:
145
+ g2p_dict = read_dict()
146
+ cache_dict(g2p_dict, CACHE_PATH)
147
+
148
+ return g2p_dict
149
+
150
+
151
+ eng_dict = get_dict()
152
+
153
+
154
+ def refine_ph(phn):
155
+ tone = 0
156
+ if re.search(r"\d$", phn):
157
+ tone = int(phn[-1]) + 1
158
+ phn = phn[:-1]
159
+ return phn.lower(), tone
160
+
161
+
162
+ def refine_syllables(syllables):
163
+ tones = []
164
+ phonemes = []
165
+ for phn_list in syllables:
166
+ for i in range(len(phn_list)):
167
+ phn = phn_list[i]
168
+ phn, tone = refine_ph(phn)
169
+ phonemes.append(phn)
170
+ tones.append(tone)
171
+ return phonemes, tones
172
+
173
+
174
+ def text_normalize(text):
175
+ # todo: eng text normalize
176
+ return text
177
+
178
+
179
+ def g2p(text):
180
+ phones = []
181
+ tones = []
182
+ words = re.split(r"([,;.\-\?\!\s+])", text)
183
+ for w in words:
184
+ if w.upper() in eng_dict:
185
+ phns, tns = refine_syllables(eng_dict[w.upper()])
186
+ phones += phns
187
+ tones += tns
188
+ else:
189
+ phone_list = list(filter(lambda p: p != " ", _g2p(w)))
190
+ for ph in phone_list:
191
+ if ph in arpa:
192
+ ph, tn = refine_ph(ph)
193
+ phones.append(ph)
194
+ tones.append(tn)
195
+ else:
196
+ phones.append(ph)
197
+ tones.append(0)
198
+ # todo: implement word2ph
199
+ word2ph = [1 for i in phones]
200
+
201
+ phones = [post_replace_ph(i) for i in phones]
202
+ return phones, tones, word2ph
203
+
204
+
205
+ if __name__ == "__main__":
206
+ # print(get_dict())
207
+ # print(eng_word_to_phoneme("hello"))
208
+ print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
209
+ # all_phones = set()
210
+ # for k, syllables in eng_dict.items():
211
+ # for group in syllables:
212
+ # for ph in group:
213
+ # all_phones.add(ph)
214
+ # print(all_phones)
text/english_bert_mock.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def get_bert_feature(norm_text, word2ph):
5
+ return torch.zeros(1024, sum(word2ph))
text/japanese.py ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Convert Japanese text to phonemes which is
2
+ # compatible with Julius https://github.com/julius-speech/segmentation-kit
3
+ import re
4
+ import unicodedata
5
+
6
+ from transformers import AutoTokenizer
7
+
8
+ from text import punctuation, symbols
9
+
10
+ try:
11
+ import MeCab
12
+ except ImportError as e:
13
+ raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
14
+ from num2words import num2words
15
+
16
+ _CONVRULES = [
17
+ # Conversion of 2 letters
18
+ "アァ/ a a",
19
+ "イィ/ i i",
20
+ "イェ/ i e",
21
+ "イャ/ y a",
22
+ "ウゥ/ u:",
23
+ "エェ/ e e",
24
+ "オォ/ o:",
25
+ "カァ/ k a:",
26
+ "キィ/ k i:",
27
+ "クゥ/ k u:",
28
+ "クャ/ ky a",
29
+ "クュ/ ky u",
30
+ "クョ/ ky o",
31
+ "ケェ/ k e:",
32
+ "コォ/ k o:",
33
+ "ガァ/ g a:",
34
+ "ギィ/ g i:",
35
+ "グゥ/ g u:",
36
+ "グャ/ gy a",
37
+ "グュ/ gy u",
38
+ "グョ/ gy o",
39
+ "ゲェ/ g e:",
40
+ "ゴォ/ g o:",
41
+ "サァ/ s a:",
42
+ "シィ/ sh i:",
43
+ "スゥ/ s u:",
44
+ "スャ/ sh a",
45
+ "スュ/ sh u",
46
+ "スョ/ sh o",
47
+ "セェ/ s e:",
48
+ "ソォ/ s o:",
49
+ "ザァ/ z a:",
50
+ "ジィ/ j i:",
51
+ "ズゥ/ z u:",
52
+ "ズャ/ zy a",
53
+ "ズュ/ zy u",
54
+ "ズョ/ zy o",
55
+ "ゼェ/ z e:",
56
+ "ゾォ/ z o:",
57
+ "タァ/ t a:",
58
+ "チィ/ ch i:",
59
+ "ツァ/ ts a",
60
+ "ツィ/ ts i",
61
+ "ツゥ/ ts u:",
62
+ "ツャ/ ch a",
63
+ "ツュ/ ch u",
64
+ "ツョ/ ch o",
65
+ "ツェ/ ts e",
66
+ "ツォ/ ts o",
67
+ "テェ/ t e:",
68
+ "トォ/ t o:",
69
+ "ダァ/ d a:",
70
+ "ヂィ/ j i:",
71
+ "ヅゥ/ d u:",
72
+ "ヅャ/ zy a",
73
+ "ヅュ/ zy u",
74
+ "ヅョ/ zy o",
75
+ "デェ/ d e:",
76
+ "ドォ/ d o:",
77
+ "ナァ/ n a:",
78
+ "ニィ/ n i:",
79
+ "ヌゥ/ n u:",
80
+ "ヌャ/ ny a",
81
+ "ヌュ/ ny u",
82
+ "ヌョ/ ny o",
83
+ "ネェ/ n e:",
84
+ "ノォ/ n o:",
85
+ "ハァ/ h a:",
86
+ "ヒィ/ h i:",
87
+ "フゥ/ f u:",
88
+ "フャ/ hy a",
89
+ "フュ/ hy u",
90
+ "フョ/ hy o",
91
+ "ヘェ/ h e:",
92
+ "ホォ/ h o:",
93
+ "バァ/ b a:",
94
+ "ビィ/ b i:",
95
+ "ブゥ/ b u:",
96
+ "フャ/ hy a",
97
+ "ブュ/ by u",
98
+ "フョ/ hy o",
99
+ "ベェ/ b e:",
100
+ "ボォ/ b o:",
101
+ "パァ/ p a:",
102
+ "ピィ/ p i:",
103
+ "プゥ/ p u:",
104
+ "プャ/ py a",
105
+ "プュ/ py u",
106
+ "プョ/ py o",
107
+ "ペェ/ p e:",
108
+ "ポォ/ p o:",
109
+ "マァ/ m a:",
110
+ "ミィ/ m i:",
111
+ "ムゥ/ m u:",
112
+ "ムャ/ my a",
113
+ "ムュ/ my u",
114
+ "ムョ/ my o",
115
+ "メェ/ m e:",
116
+ "モォ/ m o:",
117
+ "ヤァ/ y a:",
118
+ "ユゥ/ y u:",
119
+ "ユャ/ y a:",
120
+ "ユュ/ y u:",
121
+ "ユョ/ y o:",
122
+ "ヨォ/ y o:",
123
+ "ラァ/ r a:",
124
+ "リィ/ r i:",
125
+ "ルゥ/ r u:",
126
+ "ルャ/ ry a",
127
+ "ルュ/ ry u",
128
+ "ルョ/ ry o",
129
+ "レェ/ r e:",
130
+ "ロォ/ r o:",
131
+ "ワァ/ w a:",
132
+ "ヲォ/ o:",
133
+ "ディ/ d i",
134
+ "デェ/ d e:",
135
+ "デャ/ dy a",
136
+ "デュ/ dy u",
137
+ "デョ/ dy o",
138
+ "ティ/ t i",
139
+ "テェ/ t e:",
140
+ "テャ/ ty a",
141
+ "テュ/ ty u",
142
+ "テョ/ ty o",
143
+ "スィ/ s i",
144
+ "ズァ/ z u a",
145
+ "ズィ/ z i",
146
+ "ズゥ/ z u",
147
+ "ズャ/ zy a",
148
+ "ズュ/ zy u",
149
+ "ズョ/ zy o",
150
+ "ズェ/ z e",
151
+ "ズォ/ z o",
152
+ "キャ/ ky a",
153
+ "キュ/ ky u",
154
+ "キョ/ ky o",
155
+ "シャ/ sh a",
156
+ "シュ/ sh u",
157
+ "シェ/ sh e",
158
+ "ショ/ sh o",
159
+ "チャ/ ch a",
160
+ "チュ/ ch u",
161
+ "チェ/ ch e",
162
+ "チョ/ ch o",
163
+ "トゥ/ t u",
164
+ "トャ/ ty a",
165
+ "トュ/ ty u",
166
+ "トョ/ ty o",
167
+ "ドァ/ d o a",
168
+ "ドゥ/ d u",
169
+ "ドャ/ dy a",
170
+ "ドュ/ dy u",
171
+ "ドョ/ dy o",
172
+ "ドォ/ d o:",
173
+ "ニャ/ ny a",
174
+ "ニュ/ ny u",
175
+ "ニョ/ ny o",
176
+ "ヒャ/ hy a",
177
+ "ヒュ/ hy u",
178
+ "ヒョ/ hy o",
179
+ "ミャ/ my a",
180
+ "ミュ/ my u",
181
+ "ミョ/ my o",
182
+ "リャ/ ry a",
183
+ "リュ/ ry u",
184
+ "リョ/ ry o",
185
+ "ギャ/ gy a",
186
+ "ギュ/ gy u",
187
+ "ギョ/ gy o",
188
+ "ヂェ/ j e",
189
+ "ヂャ/ j a",
190
+ "ヂュ/ j u",
191
+ "ヂョ/ j o",
192
+ "ジェ/ j e",
193
+ "ジャ/ j a",
194
+ "ジュ/ j u",
195
+ "ジョ/ j o",
196
+ "ビャ/ by a",
197
+ "ビュ/ by u",
198
+ "ビョ/ by o",
199
+ "ピャ/ py a",
200
+ "ピュ/ py u",
201
+ "ピョ/ py o",
202
+ "ウァ/ u a",
203
+ "ウィ/ w i",
204
+ "ウェ/ w e",
205
+ "ウォ/ w o",
206
+ "ファ/ f a",
207
+ "フィ/ f i",
208
+ "フゥ/ f u",
209
+ "フャ/ hy a",
210
+ "フュ/ hy u",
211
+ "フョ/ hy o",
212
+ "フェ/ f e",
213
+ "フォ/ f o",
214
+ "ヴァ/ b a",
215
+ "ヴィ/ b i",
216
+ "ヴェ/ b e",
217
+ "ヴォ/ b o",
218
+ "ヴュ/ by u",
219
+ # Conversion of 1 letter
220
+ "ア/ a",
221
+ "イ/ i",
222
+ "ウ/ u",
223
+ "エ/ e",
224
+ "オ/ o",
225
+ "カ/ k a",
226
+ "キ/ k i",
227
+ "ク/ k u",
228
+ "ケ/ k e",
229
+ "コ/ k o",
230
+ "サ/ s a",
231
+ "シ/ sh i",
232
+ "ス/ s u",
233
+ "セ/ s e",
234
+ "ソ/ s o",
235
+ "タ/ t a",
236
+ "チ/ ch i",
237
+ "ツ/ ts u",
238
+ "テ/ t e",
239
+ "ト/ t o",
240
+ "ナ/ n a",
241
+ "ニ/ n i",
242
+ "ヌ/ n u",
243
+ "ネ/ n e",
244
+ "ノ/ n o",
245
+ "ハ/ h a",
246
+ "ヒ/ h i",
247
+ "フ/ f u",
248
+ "ヘ/ h e",
249
+ "ホ/ h o",
250
+ "マ/ m a",
251
+ "ミ/ m i",
252
+ "ム/ m u",
253
+ "メ/ m e",
254
+ "モ/ m o",
255
+ "ラ/ r a",
256
+ "リ/ r i",
257
+ "ル/ r u",
258
+ "レ/ r e",
259
+ "ロ/ r o",
260
+ "ガ/ g a",
261
+ "ギ/ g i",
262
+ "グ/ g u",
263
+ "ゲ/ g e",
264
+ "ゴ/ g o",
265
+ "ザ/ z a",
266
+ "ジ/ j i",
267
+ "ズ/ z u",
268
+ "ゼ/ z e",
269
+ "ゾ/ z o",
270
+ "ダ/ d a",
271
+ "ヂ/ j i",
272
+ "ヅ/ z u",
273
+ "デ/ d e",
274
+ "ド/ d o",
275
+ "バ/ b a",
276
+ "ビ/ b i",
277
+ "ブ/ b u",
278
+ "ベ/ b e",
279
+ "ボ/ b o",
280
+ "パ/ p a",
281
+ "ピ/ p i",
282
+ "プ/ p u",
283
+ "ペ/ p e",
284
+ "ポ/ p o",
285
+ "ヤ/ y a",
286
+ "ユ/ y u",
287
+ "ヨ/ y o",
288
+ "ワ/ w a",
289
+ "ヰ/ i",
290
+ "ヱ/ e",
291
+ "ヲ/ o",
292
+ "ン/ N",
293
+ "ッ/ q",
294
+ "ヴ/ b u",
295
+ "ー/:",
296
+ # Try converting broken text
297
+ "ァ/ a",
298
+ "ィ/ i",
299
+ "ゥ/ u",
300
+ "ェ/ e",
301
+ "ォ/ o",
302
+ "ヮ/ w a",
303
+ "ォ/ o",
304
+ # Symbols
305
+ "、/ ,",
306
+ "。/ .",
307
+ "!/ !",
308
+ "?/ ?",
309
+ "・/ ,",
310
+ ]
311
+
312
+ _COLON_RX = re.compile(":+")
313
+ _REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
314
+
315
+
316
+ def _makerulemap():
317
+ l = [tuple(x.split("/")) for x in _CONVRULES]
318
+ return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
319
+
320
+
321
+ _RULEMAP1, _RULEMAP2 = _makerulemap()
322
+
323
+
324
+ def kata2phoneme(text: str) -> str:
325
+ """Convert katakana text to phonemes."""
326
+ text = text.strip()
327
+ res = []
328
+ while text:
329
+ if len(text) >= 2:
330
+ x = _RULEMAP2.get(text[:2])
331
+ if x is not None:
332
+ text = text[2:]
333
+ res += x.split(" ")[1:]
334
+ continue
335
+ x = _RULEMAP1.get(text[0])
336
+ if x is not None:
337
+ text = text[1:]
338
+ res += x.split(" ")[1:]
339
+ continue
340
+ res.append(text[0])
341
+ text = text[1:]
342
+ # res = _COLON_RX.sub(":", res)
343
+ return res
344
+
345
+
346
+ _KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
347
+ _HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
348
+ _HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
349
+
350
+
351
+ def hira2kata(text: str) -> str:
352
+ text = text.translate(_HIRA2KATATRANS)
353
+ return text.replace("う゛", "ヴ")
354
+
355
+
356
+ _SYMBOL_TOKENS = set(list("・、。?!"))
357
+ _NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
358
+ _TAGGER = MeCab.Tagger()
359
+
360
+
361
+ def text2kata(text: str) -> str:
362
+ parsed = _TAGGER.parse(text)
363
+ res = []
364
+ for line in parsed.split("\n"):
365
+ if line == "EOS":
366
+ break
367
+ parts = line.split("\t")
368
+
369
+ word, yomi = parts[0], parts[1]
370
+ if yomi:
371
+ res.append(yomi)
372
+ else:
373
+ if word in _SYMBOL_TOKENS:
374
+ res.append(word)
375
+ elif word in ("っ", "ッ"):
376
+ res.append("ッ")
377
+ elif word in _NO_YOMI_TOKENS:
378
+ pass
379
+ else:
380
+ res.append(word)
381
+ return hira2kata("".join(res))
382
+
383
+
384
+ _ALPHASYMBOL_YOMI = {
385
+ "#": "シャープ",
386
+ "%": "パーセント",
387
+ "&": "アンド",
388
+ "+": "プラス",
389
+ "-": "マイナス",
390
+ ":": "コロン",
391
+ ";": "セミコロン",
392
+ "<": "小なり",
393
+ "=": "イコール",
394
+ ">": "大なり",
395
+ "@": "アット",
396
+ "a": "エー",
397
+ "b": "ビー",
398
+ "c": "シー",
399
+ "d": "ディー",
400
+ "e": "イー",
401
+ "f": "エフ",
402
+ "g": "ジー",
403
+ "h": "エイチ",
404
+ "i": "アイ",
405
+ "j": "ジェー",
406
+ "k": "ケー",
407
+ "l": "エル",
408
+ "m": "エム",
409
+ "n": "エヌ",
410
+ "o": "オー",
411
+ "p": "ピー",
412
+ "q": "キュー",
413
+ "r": "アール",
414
+ "s": "エス",
415
+ "t": "ティー",
416
+ "u": "ユー",
417
+ "v": "ブイ",
418
+ "w": "ダブリュー",
419
+ "x": "エックス",
420
+ "y": "ワイ",
421
+ "z": "ゼット",
422
+ "α": "アルファ",
423
+ "β": "ベータ",
424
+ "γ": "ガンマ",
425
+ "δ": "デルタ",
426
+ "ε": "イプシロン",
427
+ "ζ": "ゼータ",
428
+ "η": "イータ",
429
+ "θ": "シータ",
430
+ "ι": "イオタ",
431
+ "κ": "カッパ",
432
+ "λ": "ラムダ",
433
+ "μ": "ミュー",
434
+ "ν": "ニュー",
435
+ "ξ": "クサイ",
436
+ "ο": "オミクロン",
437
+ "π": "パイ",
438
+ "ρ": "ロー",
439
+ "σ": "シグマ",
440
+ "τ": "タウ",
441
+ "υ": "ウプシロン",
442
+ "φ": "ファイ",
443
+ "χ": "カイ",
444
+ "ψ": "プサイ",
445
+ "ω": "オメガ",
446
+ }
447
+
448
+
449
+ _NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
450
+ _CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
451
+ _CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
452
+ _NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
453
+
454
+
455
+ def japanese_convert_numbers_to_words(text: str) -> str:
456
+ res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
457
+ res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
458
+ res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
459
+ return res
460
+
461
+
462
+ def japanese_convert_alpha_symbols_to_words(text: str) -> str:
463
+ return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
464
+
465
+
466
+ def japanese_text_to_phonemes(text: str) -> str:
467
+ """Convert Japanese text to phonemes."""
468
+ res = unicodedata.normalize("NFKC", text)
469
+ res = japanese_convert_numbers_to_words(res)
470
+ # res = japanese_convert_alpha_symbols_to_words(res)
471
+ res = text2kata(res)
472
+ res = kata2phoneme(res)
473
+ return res
474
+
475
+
476
+ def is_japanese_character(char):
477
+ # 定义日语文字系统的 Unicode 范围
478
+ japanese_ranges = [
479
+ (0x3040, 0x309F), # 平假名
480
+ (0x30A0, 0x30FF), # 片假名
481
+ (0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
482
+ (0x3400, 0x4DBF), # 汉字扩展 A
483
+ (0x20000, 0x2A6DF), # 汉字扩展 B
484
+ # 可以根据需要添加其他汉字扩展范围
485
+ ]
486
+
487
+ # 将字符的 Unicode 编码转换为整数
488
+ char_code = ord(char)
489
+
490
+ # 检查字符是否在任何一个日语范围内
491
+ for start, end in japanese_ranges:
492
+ if start <= char_code <= end:
493
+ return True
494
+
495
+ return False
496
+
497
+
498
+ rep_map = {
499
+ ":": ",",
500
+ ";": ",",
501
+ ",": ",",
502
+ "。": ".",
503
+ "!": "!",
504
+ "?": "?",
505
+ "\n": ".",
506
+ "·": ",",
507
+ "、": ",",
508
+ "...": "…",
509
+ }
510
+
511
+
512
+ def replace_punctuation(text):
513
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
514
+
515
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
516
+
517
+ replaced_text = re.sub(
518
+ r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
519
+ + "".join(punctuation)
520
+ + r"]+",
521
+ "",
522
+ replaced_text,
523
+ )
524
+
525
+ return replaced_text
526
+
527
+
528
+ def text_normalize(text):
529
+ res = unicodedata.normalize("NFKC", text)
530
+ res = japanese_convert_numbers_to_words(res)
531
+ # res = "".join([i for i in res if is_japanese_character(i)])
532
+ res = replace_punctuation(res)
533
+ return res
534
+
535
+
536
+ def distribute_phone(n_phone, n_word):
537
+ phones_per_word = [0] * n_word
538
+ for task in range(n_phone):
539
+ min_tasks = min(phones_per_word)
540
+ min_index = phones_per_word.index(min_tasks)
541
+ phones_per_word[min_index] += 1
542
+ return phones_per_word
543
+
544
+
545
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
546
+
547
+
548
+ def g2p(norm_text):
549
+ tokenized = tokenizer.tokenize(norm_text)
550
+ phs = []
551
+ ph_groups = []
552
+ for t in tokenized:
553
+ if not t.startswith("#"):
554
+ ph_groups.append([t])
555
+ else:
556
+ ph_groups[-1].append(t.replace("#", ""))
557
+ word2ph = []
558
+ for group in ph_groups:
559
+ phonemes = kata2phoneme(text2kata("".join(group)))
560
+ # phonemes = [i for i in phonemes if i in symbols]
561
+ for i in phonemes:
562
+ assert i in symbols, (group, norm_text, tokenized)
563
+ phone_len = len(phonemes)
564
+ word_len = len(group)
565
+
566
+ aaa = distribute_phone(phone_len, word_len)
567
+ word2ph += aaa
568
+
569
+ phs += phonemes
570
+ phones = ["_"] + phs + ["_"]
571
+ tones = [0 for i in phones]
572
+ word2ph = [1] + word2ph + [1]
573
+ return phones, tones, word2ph
574
+
575
+
576
+ if __name__ == "__main__":
577
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
578
+ text = "hello,こんにちは、世界!……"
579
+ from text.japanese_bert import get_bert_feature
580
+
581
+ text = text_normalize(text)
582
+ print(text)
583
+ phones, tones, word2ph = g2p(text)
584
+ bert = get_bert_feature(text, word2ph)
585
+
586
+ print(phones, tones, word2ph, bert.shape)
text/japanese_bert.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
3
+ import sys
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
6
+
7
+
8
+ def get_bert_feature(text, word2ph, device=None):
9
+ if (
10
+ sys.platform == "darwin"
11
+ and torch.backends.mps.is_available()
12
+ and device == "cpu"
13
+ ):
14
+ device = "mps"
15
+ if not device:
16
+ device = "cuda"
17
+ model = AutoModelForMaskedLM.from_pretrained("./bert/bert-base-japanese-v3").to(
18
+ device
19
+ )
20
+ with torch.no_grad():
21
+ inputs = tokenizer(text, return_tensors="pt")
22
+ for i in inputs:
23
+ inputs[i] = inputs[i].to(device)
24
+ res = model(**inputs, output_hidden_states=True)
25
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
26
+ assert inputs["input_ids"].shape[-1] == len(word2ph)
27
+ word2phone = word2ph
28
+ phone_level_feature = []
29
+ for i in range(len(word2phone)):
30
+ repeat_feature = res[i].repeat(word2phone[i], 1)
31
+ phone_level_feature.append(repeat_feature)
32
+
33
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
34
+
35
+ return phone_level_feature.T
text/opencpop-strict.txt ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ a AA a
2
+ ai AA ai
3
+ an AA an
4
+ ang AA ang
5
+ ao AA ao
6
+ ba b a
7
+ bai b ai
8
+ ban b an
9
+ bang b ang
10
+ bao b ao
11
+ bei b ei
12
+ ben b en
13
+ beng b eng
14
+ bi b i
15
+ bian b ian
16
+ biao b iao
17
+ bie b ie
18
+ bin b in
19
+ bing b ing
20
+ bo b o
21
+ bu b u
22
+ ca c a
23
+ cai c ai
24
+ can c an
25
+ cang c ang
26
+ cao c ao
27
+ ce c e
28
+ cei c ei
29
+ cen c en
30
+ ceng c eng
31
+ cha ch a
32
+ chai ch ai
33
+ chan ch an
34
+ chang ch ang
35
+ chao ch ao
36
+ che ch e
37
+ chen ch en
38
+ cheng ch eng
39
+ chi ch ir
40
+ chong ch ong
41
+ chou ch ou
42
+ chu ch u
43
+ chua ch ua
44
+ chuai ch uai
45
+ chuan ch uan
46
+ chuang ch uang
47
+ chui ch ui
48
+ chun ch un
49
+ chuo ch uo
50
+ ci c i0
51
+ cong c ong
52
+ cou c ou
53
+ cu c u
54
+ cuan c uan
55
+ cui c ui
56
+ cun c un
57
+ cuo c uo
58
+ da d a
59
+ dai d ai
60
+ dan d an
61
+ dang d ang
62
+ dao d ao
63
+ de d e
64
+ dei d ei
65
+ den d en
66
+ deng d eng
67
+ di d i
68
+ dia d ia
69
+ dian d ian
70
+ diao d iao
71
+ die d ie
72
+ ding d ing
73
+ diu d iu
74
+ dong d ong
75
+ dou d ou
76
+ du d u
77
+ duan d uan
78
+ dui d ui
79
+ dun d un
80
+ duo d uo
81
+ e EE e
82
+ ei EE ei
83
+ en EE en
84
+ eng EE eng
85
+ er EE er
86
+ fa f a
87
+ fan f an
88
+ fang f ang
89
+ fei f ei
90
+ fen f en
91
+ feng f eng
92
+ fo f o
93
+ fou f ou
94
+ fu f u
95
+ ga g a
96
+ gai g ai
97
+ gan g an
98
+ gang g ang
99
+ gao g ao
100
+ ge g e
101
+ gei g ei
102
+ gen g en
103
+ geng g eng
104
+ gong g ong
105
+ gou g ou
106
+ gu g u
107
+ gua g ua
108
+ guai g uai
109
+ guan g uan
110
+ guang g uang
111
+ gui g ui
112
+ gun g un
113
+ guo g uo
114
+ ha h a
115
+ hai h ai
116
+ han h an
117
+ hang h ang
118
+ hao h ao
119
+ he h e
120
+ hei h ei
121
+ hen h en
122
+ heng h eng
123
+ hong h ong
124
+ hou h ou
125
+ hu h u
126
+ hua h ua
127
+ huai h uai
128
+ huan h uan
129
+ huang h uang
130
+ hui h ui
131
+ hun h un
132
+ huo h uo
133
+ ji j i
134
+ jia j ia
135
+ jian j ian
136
+ jiang j iang
137
+ jiao j iao
138
+ jie j ie
139
+ jin j in
140
+ jing j ing
141
+ jiong j iong
142
+ jiu j iu
143
+ ju j v
144
+ jv j v
145
+ juan j van
146
+ jvan j van
147
+ jue j ve
148
+ jve j ve
149
+ jun j vn
150
+ jvn j vn
151
+ ka k a
152
+ kai k ai
153
+ kan k an
154
+ kang k ang
155
+ kao k ao
156
+ ke k e
157
+ kei k ei
158
+ ken k en
159
+ keng k eng
160
+ kong k ong
161
+ kou k ou
162
+ ku k u
163
+ kua k ua
164
+ kuai k uai
165
+ kuan k uan
166
+ kuang k uang
167
+ kui k ui
168
+ kun k un
169
+ kuo k uo
170
+ la l a
171
+ lai l ai
172
+ lan l an
173
+ lang l ang
174
+ lao l ao
175
+ le l e
176
+ lei l ei
177
+ leng l eng
178
+ li l i
179
+ lia l ia
180
+ lian l ian
181
+ liang l iang
182
+ liao l iao
183
+ lie l ie
184
+ lin l in
185
+ ling l ing
186
+ liu l iu
187
+ lo l o
188
+ long l ong
189
+ lou l ou
190
+ lu l u
191
+ luan l uan
192
+ lun l un
193
+ luo l uo
194
+ lv l v
195
+ lve l ve
196
+ ma m a
197
+ mai m ai
198
+ man m an
199
+ mang m ang
200
+ mao m ao
201
+ me m e
202
+ mei m ei
203
+ men m en
204
+ meng m eng
205
+ mi m i
206
+ mian m ian
207
+ miao m iao
208
+ mie m ie
209
+ min m in
210
+ ming m ing
211
+ miu m iu
212
+ mo m o
213
+ mou m ou
214
+ mu m u
215
+ na n a
216
+ nai n ai
217
+ nan n an
218
+ nang n ang
219
+ nao n ao
220
+ ne n e
221
+ nei n ei
222
+ nen n en
223
+ neng n eng
224
+ ni n i
225
+ nian n ian
226
+ niang n iang
227
+ niao n iao
228
+ nie n ie
229
+ nin n in
230
+ ning n ing
231
+ niu n iu
232
+ nong n ong
233
+ nou n ou
234
+ nu n u
235
+ nuan n uan
236
+ nun n un
237
+ nuo n uo
238
+ nv n v
239
+ nve n ve
240
+ o OO o
241
+ ou OO ou
242
+ pa p a
243
+ pai p ai
244
+ pan p an
245
+ pang p ang
246
+ pao p ao
247
+ pei p ei
248
+ pen p en
249
+ peng p eng
250
+ pi p i
251
+ pian p ian
252
+ piao p iao
253
+ pie p ie
254
+ pin p in
255
+ ping p ing
256
+ po p o
257
+ pou p ou
258
+ pu p u
259
+ qi q i
260
+ qia q ia
261
+ qian q ian
262
+ qiang q iang
263
+ qiao q iao
264
+ qie q ie
265
+ qin q in
266
+ qing q ing
267
+ qiong q iong
268
+ qiu q iu
269
+ qu q v
270
+ qv q v
271
+ quan q van
272
+ qvan q van
273
+ que q ve
274
+ qve q ve
275
+ qun q vn
276
+ qvn q vn
277
+ ran r an
278
+ rang r ang
279
+ rao r ao
280
+ re r e
281
+ ren r en
282
+ reng r eng
283
+ ri r ir
284
+ rong r ong
285
+ rou r ou
286
+ ru r u
287
+ rua r ua
288
+ ruan r uan
289
+ rui r ui
290
+ run r un
291
+ ruo r uo
292
+ sa s a
293
+ sai s ai
294
+ san s an
295
+ sang s ang
296
+ sao s ao
297
+ se s e
298
+ sen s en
299
+ seng s eng
300
+ sha sh a
301
+ shai sh ai
302
+ shan sh an
303
+ shang sh ang
304
+ shao sh ao
305
+ she sh e
306
+ shei sh ei
307
+ shen sh en
308
+ sheng sh eng
309
+ shi sh ir
310
+ shou sh ou
311
+ shu sh u
312
+ shua sh ua
313
+ shuai sh uai
314
+ shuan sh uan
315
+ shuang sh uang
316
+ shui sh ui
317
+ shun sh un
318
+ shuo sh uo
319
+ si s i0
320
+ song s ong
321
+ sou s ou
322
+ su s u
323
+ suan s uan
324
+ sui s ui
325
+ sun s un
326
+ suo s uo
327
+ ta t a
328
+ tai t ai
329
+ tan t an
330
+ tang t ang
331
+ tao t ao
332
+ te t e
333
+ tei t ei
334
+ teng t eng
335
+ ti t i
336
+ tian t ian
337
+ tiao t iao
338
+ tie t ie
339
+ ting t ing
340
+ tong t ong
341
+ tou t ou
342
+ tu t u
343
+ tuan t uan
344
+ tui t ui
345
+ tun t un
346
+ tuo t uo
347
+ wa w a
348
+ wai w ai
349
+ wan w an
350
+ wang w ang
351
+ wei w ei
352
+ wen w en
353
+ weng w eng
354
+ wo w o
355
+ wu w u
356
+ xi x i
357
+ xia x ia
358
+ xian x ian
359
+ xiang x iang
360
+ xiao x iao
361
+ xie x ie
362
+ xin x in
363
+ xing x ing
364
+ xiong x iong
365
+ xiu x iu
366
+ xu x v
367
+ xv x v
368
+ xuan x van
369
+ xvan x van
370
+ xue x ve
371
+ xve x ve
372
+ xun x vn
373
+ xvn x vn
374
+ ya y a
375
+ yan y En
376
+ yang y ang
377
+ yao y ao
378
+ ye y E
379
+ yi y i
380
+ yin y in
381
+ ying y ing
382
+ yo y o
383
+ yong y ong
384
+ you y ou
385
+ yu y v
386
+ yv y v
387
+ yuan y van
388
+ yvan y van
389
+ yue y ve
390
+ yve y ve
391
+ yun y vn
392
+ yvn y vn
393
+ za z a
394
+ zai z ai
395
+ zan z an
396
+ zang z ang
397
+ zao z ao
398
+ ze z e
399
+ zei z ei
400
+ zen z en
401
+ zeng z eng
402
+ zha zh a
403
+ zhai zh ai
404
+ zhan zh an
405
+ zhang zh ang
406
+ zhao zh ao
407
+ zhe zh e
408
+ zhei zh ei
409
+ zhen zh en
410
+ zheng zh eng
411
+ zhi zh ir
412
+ zhong zh ong
413
+ zhou zh ou
414
+ zhu zh u
415
+ zhua zh ua
416
+ zhuai zh uai
417
+ zhuan zh uan
418
+ zhuang zh uang
419
+ zhui zh ui
420
+ zhun zh un
421
+ zhuo zh uo
422
+ zi z i0
423
+ zong z ong
424
+ zou z ou
425
+ zu z u
426
+ zuan z uan
427
+ zui z ui
428
+ zun z un
429
+ zuo z uo
text/symbols.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ punctuation = ["!", "?", "…", ",", ".", "'", "-"]
2
+ pu_symbols = punctuation + ["SP", "UNK"]
3
+ pad = "_"
4
+
5
+ # chinese
6
+ zh_symbols = [
7
+ "E",
8
+ "En",
9
+ "a",
10
+ "ai",
11
+ "an",
12
+ "ang",
13
+ "ao",
14
+ "b",
15
+ "c",
16
+ "ch",
17
+ "d",
18
+ "e",
19
+ "ei",
20
+ "en",
21
+ "eng",
22
+ "er",
23
+ "f",
24
+ "g",
25
+ "h",
26
+ "i",
27
+ "i0",
28
+ "ia",
29
+ "ian",
30
+ "iang",
31
+ "iao",
32
+ "ie",
33
+ "in",
34
+ "ing",
35
+ "iong",
36
+ "ir",
37
+ "iu",
38
+ "j",
39
+ "k",
40
+ "l",
41
+ "m",
42
+ "n",
43
+ "o",
44
+ "ong",
45
+ "ou",
46
+ "p",
47
+ "q",
48
+ "r",
49
+ "s",
50
+ "sh",
51
+ "t",
52
+ "u",
53
+ "ua",
54
+ "uai",
55
+ "uan",
56
+ "uang",
57
+ "ui",
58
+ "un",
59
+ "uo",
60
+ "v",
61
+ "van",
62
+ "ve",
63
+ "vn",
64
+ "w",
65
+ "x",
66
+ "y",
67
+ "z",
68
+ "zh",
69
+ "AA",
70
+ "EE",
71
+ "OO",
72
+ ]
73
+ num_zh_tones = 6
74
+
75
+ # japanese
76
+ ja_symbols = [
77
+ "N",
78
+ "a",
79
+ "a:",
80
+ "b",
81
+ "by",
82
+ "ch",
83
+ "d",
84
+ "dy",
85
+ "e",
86
+ "e:",
87
+ "f",
88
+ "g",
89
+ "gy",
90
+ "h",
91
+ "hy",
92
+ "i",
93
+ "i:",
94
+ "j",
95
+ "k",
96
+ "ky",
97
+ "m",
98
+ "my",
99
+ "n",
100
+ "ny",
101
+ "o",
102
+ "o:",
103
+ "p",
104
+ "py",
105
+ "q",
106
+ "r",
107
+ "ry",
108
+ "s",
109
+ "sh",
110
+ "t",
111
+ "ts",
112
+ "ty",
113
+ "u",
114
+ "u:",
115
+ "w",
116
+ "y",
117
+ "z",
118
+ "zy",
119
+ ]
120
+ num_ja_tones = 1
121
+
122
+ # English
123
+ en_symbols = [
124
+ "aa",
125
+ "ae",
126
+ "ah",
127
+ "ao",
128
+ "aw",
129
+ "ay",
130
+ "b",
131
+ "ch",
132
+ "d",
133
+ "dh",
134
+ "eh",
135
+ "er",
136
+ "ey",
137
+ "f",
138
+ "g",
139
+ "hh",
140
+ "ih",
141
+ "iy",
142
+ "jh",
143
+ "k",
144
+ "l",
145
+ "m",
146
+ "n",
147
+ "ng",
148
+ "ow",
149
+ "oy",
150
+ "p",
151
+ "r",
152
+ "s",
153
+ "sh",
154
+ "t",
155
+ "th",
156
+ "uh",
157
+ "uw",
158
+ "V",
159
+ "w",
160
+ "y",
161
+ "z",
162
+ "zh",
163
+ ]
164
+ num_en_tones = 4
165
+
166
+ # combine all symbols
167
+ normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
168
+ symbols = [pad] + normal_symbols + pu_symbols
169
+ sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
170
+
171
+ # combine all tones
172
+ num_tones = num_zh_tones + num_ja_tones + num_en_tones
173
+
174
+ # language maps
175
+ language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
176
+ num_languages = len(language_id_map.keys())
177
+
178
+ language_tone_start_map = {
179
+ "ZH": 0,
180
+ "JP": num_zh_tones,
181
+ "EN": num_zh_tones + num_ja_tones,
182
+ }
183
+
184
+ if __name__ == "__main__":
185
+ a = set(zh_symbols)
186
+ b = set(en_symbols)
187
+ print(sorted(a & b))
text/tone_sandhi.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import List
15
+ from typing import Tuple
16
+
17
+ import jieba
18
+ from pypinyin import lazy_pinyin
19
+ from pypinyin import Style
20
+
21
+
22
+ class ToneSandhi:
23
+ def __init__(self):
24
+ self.must_neural_tone_words = {
25
+ "麻烦",
26
+ "麻利",
27
+ "鸳鸯",
28
+ "高粱",
29
+ "骨头",
30
+ "骆驼",
31
+ "马虎",
32
+ "首饰",
33
+ "馒头",
34
+ "馄饨",
35
+ "风筝",
36
+ "难为",
37
+ "队伍",
38
+ "阔气",
39
+ "闺女",
40
+ "门道",
41
+ "锄头",
42
+ "铺盖",
43
+ "铃铛",
44
+ "铁匠",
45
+ "钥匙",
46
+ "里脊",
47
+ "里头",
48
+ "部分",
49
+ "那么",
50
+ "道士",
51
+ "造化",
52
+ "迷糊",
53
+ "连累",
54
+ "这么",
55
+ "这个",
56
+ "运气",
57
+ "过去",
58
+ "软和",
59
+ "转悠",
60
+ "踏实",
61
+ "跳蚤",
62
+ "跟头",
63
+ "趔趄",
64
+ "财主",
65
+ "豆腐",
66
+ "讲究",
67
+ "记性",
68
+ "记号",
69
+ "认识",
70
+ "规矩",
71
+ "见识",
72
+ "裁缝",
73
+ "补丁",
74
+ "衣裳",
75
+ "衣服",
76
+ "衙门",
77
+ "街坊",
78
+ "行李",
79
+ "行当",
80
+ "蛤蟆",
81
+ "蘑菇",
82
+ "薄荷",
83
+ "葫芦",
84
+ "葡萄",
85
+ "萝卜",
86
+ "荸荠",
87
+ "苗条",
88
+ "苗头",
89
+ "苍蝇",
90
+ "芝麻",
91
+ "舒服",
92
+ "舒坦",
93
+ "舌头",
94
+ "自在",
95
+ "膏药",
96
+ "脾气",
97
+ "脑袋",
98
+ "脊梁",
99
+ "能耐",
100
+ "胳膊",
101
+ "胭脂",
102
+ "胡萝",
103
+ "胡琴",
104
+ "胡同",
105
+ "聪明",
106
+ "耽误",
107
+ "耽搁",
108
+ "耷拉",
109
+ "耳朵",
110
+ "老爷",
111
+ "老实",
112
+ "老婆",
113
+ "老头",
114
+ "老太",
115
+ "翻腾",
116
+ "罗嗦",
117
+ "罐头",
118
+ "编辑",
119
+ "结实",
120
+ "红火",
121
+ "累赘",
122
+ "糨糊",
123
+ "糊涂",
124
+ "精神",
125
+ "粮食",
126
+ "簸箕",
127
+ "篱笆",
128
+ "算计",
129
+ "算盘",
130
+ "答应",
131
+ "笤帚",
132
+ "笑语",
133
+ "笑话",
134
+ "窟窿",
135
+ "窝囊",
136
+ "窗户",
137
+ "稳当",
138
+ "稀罕",
139
+ "称呼",
140
+ "秧歌",
141
+ "秀气",
142
+ "秀才",
143
+ "福气",
144
+ "祖宗",
145
+ "砚台",
146
+ "码头",
147
+ "石榴",
148
+ "石头",
149
+ "石匠",
150
+ "知识",
151
+ "眼睛",
152
+ "眯缝",
153
+ "眨巴",
154
+ "眉毛",
155
+ "相声",
156
+ "盘算",
157
+ "白净",
158
+ "痢疾",
159
+ "痛快",
160
+ "疟疾",
161
+ "疙瘩",
162
+ "疏忽",
163
+ "畜生",
164
+ "生意",
165
+ "甘蔗",
166
+ "琵琶",
167
+ "琢磨",
168
+ "琉璃",
169
+ "玻璃",
170
+ "玫瑰",
171
+ "玄乎",
172
+ "狐狸",
173
+ "状元",
174
+ "特务",
175
+ "牲口",
176
+ "牙碜",
177
+ "牌楼",
178
+ "爽快",
179
+ "爱人",
180
+ "热闹",
181
+ "烧饼",
182
+ "烟筒",
183
+ "烂糊",
184
+ "点心",
185
+ "炊帚",
186
+ "灯笼",
187
+ "火候",
188
+ "漂亮",
189
+ "滑溜",
190
+ "溜达",
191
+ "温和",
192
+ "清楚",
193
+ "消息",
194
+ "浪头",
195
+ "活泼",
196
+ "比方",
197
+ "正经",
198
+ "欺负",
199
+ "模糊",
200
+ "槟榔",
201
+ "棺材",
202
+ "棒槌",
203
+ "棉花",
204
+ "核桃",
205
+ "栅栏",
206
+ "柴火",
207
+ "架势",
208
+ "枕头",
209
+ "枇杷",
210
+ "机灵",
211
+ "本事",
212
+ "木头",
213
+ "木匠",
214
+ "朋友",
215
+ "月饼",
216
+ "月亮",
217
+ "暖和",
218
+ "明白",
219
+ "时候",
220
+ "新鲜",
221
+ "故事",
222
+ "收拾",
223
+ "收成",
224
+ "提防",
225
+ "挖苦",
226
+ "挑剔",
227
+ "指甲",
228
+ "指头",
229
+ "拾掇",
230
+ "拳头",
231
+ "拨弄",
232
+ "招牌",
233
+ "招呼",
234
+ "抬举",
235
+ "护士",
236
+ "折腾",
237
+ "扫帚",
238
+ "打量",
239
+ "打算",
240
+ "打点",
241
+ "打扮",
242
+ "打听",
243
+ "打发",
244
+ "扎实",
245
+ "扁担",
246
+ "戒指",
247
+ "懒得",
248
+ "意识",
249
+ "意思",
250
+ "情形",
251
+ "悟性",
252
+ "怪物",
253
+ "思量",
254
+ "怎么",
255
+ "念头",
256
+ "念叨",
257
+ "快活",
258
+ "忙活",
259
+ "志气",
260
+ "心思",
261
+ "得罪",
262
+ "张罗",
263
+ "弟兄",
264
+ "开通",
265
+ "应酬",
266
+ "庄稼",
267
+ "干事",
268
+ "帮手",
269
+ "帐篷",
270
+ "希罕",
271
+ "师父",
272
+ "师傅",
273
+ "巴结",
274
+ "巴掌",
275
+ "差事",
276
+ "工夫",
277
+ "岁数",
278
+ "屁股",
279
+ "尾巴",
280
+ "少爷",
281
+ "小气",
282
+ "小伙",
283
+ "将就",
284
+ "对头",
285
+ "对付",
286
+ "寡妇",
287
+ "家伙",
288
+ "客气",
289
+ "实在",
290
+ "官司",
291
+ "学问",
292
+ "学生",
293
+ "字号",
294
+ "嫁妆",
295
+ "媳妇",
296
+ "媒人",
297
+ "婆家",
298
+ "娘家",
299
+ "委屈",
300
+ "姑娘",
301
+ "姐夫",
302
+ "妯娌",
303
+ "妥当",
304
+ "妖精",
305
+ "奴才",
306
+ "女婿",
307
+ "头发",
308
+ "太阳",
309
+ "大爷",
310
+ "大方",
311
+ "大意",
312
+ "大夫",
313
+ "多少",
314
+ "多么",
315
+ "外甥",
316
+ "壮实",
317
+ "地道",
318
+ "地方",
319
+ "在乎",
320
+ "困难",
321
+ "嘴巴",
322
+ "嘱咐",
323
+ "嘟囔",
324
+ "嘀咕",
325
+ "喜欢",
326
+ "喇嘛",
327
+ "喇叭",
328
+ "商量",
329
+ "唾沫",
330
+ "哑巴",
331
+ "哈欠",
332
+ "哆嗦",
333
+ "咳嗽",
334
+ "和尚",
335
+ "告诉",
336
+ "告示",
337
+ "含糊",
338
+ "吓唬",
339
+ "后头",
340
+ "名字",
341
+ "名堂",
342
+ "合同",
343
+ "吆喝",
344
+ "叫唤",
345
+ "口袋",
346
+ "厚道",
347
+ "厉害",
348
+ "千斤",
349
+ "包袱",
350
+ "包涵",
351
+ "匀称",
352
+ "勤快",
353
+ "动静",
354
+ "动弹",
355
+ "功夫",
356
+ "力气",
357
+ "前头",
358
+ "刺猬",
359
+ "刺激",
360
+ "别扭",
361
+ "利落",
362
+ "利索",
363
+ "利害",
364
+ "分析",
365
+ "出息",
366
+ "凑合",
367
+ "凉快",
368
+ "冷战",
369
+ "冤枉",
370
+ "冒失",
371
+ "养活",
372
+ "关系",
373
+ "先生",
374
+ "兄弟",
375
+ "便宜",
376
+ "使唤",
377
+ "佩服",
378
+ "作坊",
379
+ "体面",
380
+ "位置",
381
+ "似的",
382
+ "伙计",
383
+ "休息",
384
+ "什么",
385
+ "人家",
386
+ "亲戚",
387
+ "亲家",
388
+ "交情",
389
+ "云彩",
390
+ "事情",
391
+ "买卖",
392
+ "主意",
393
+ "丫头",
394
+ "丧气",
395
+ "两口",
396
+ "东西",
397
+ "东家",
398
+ "世故",
399
+ "不由",
400
+ "不在",
401
+ "下水",
402
+ "下巴",
403
+ "上头",
404
+ "上司",
405
+ "丈夫",
406
+ "丈人",
407
+ "一辈",
408
+ "那个",
409
+ "菩萨",
410
+ "父亲",
411
+ "母亲",
412
+ "咕噜",
413
+ "邋遢",
414
+ "费用",
415
+ "冤家",
416
+ "甜头",
417
+ "介绍",
418
+ "荒唐",
419
+ "大人",
420
+ "泥鳅",
421
+ "幸福",
422
+ "熟悉",
423
+ "计划",
424
+ "扑腾",
425
+ "蜡烛",
426
+ "姥爷",
427
+ "照顾",
428
+ "喉咙",
429
+ "吉他",
430
+ "弄堂",
431
+ "蚂蚱",
432
+ "凤凰",
433
+ "拖沓",
434
+ "寒碜",
435
+ "糟蹋",
436
+ "倒腾",
437
+ "报复",
438
+ "逻辑",
439
+ "盘缠",
440
+ "喽啰",
441
+ "牢骚",
442
+ "咖喱",
443
+ "扫把",
444
+ "惦记",
445
+ }
446
+ self.must_not_neural_tone_words = {
447
+ "男子",
448
+ "女子",
449
+ "分子",
450
+ "原子",
451
+ "量子",
452
+ "莲子",
453
+ "石子",
454
+ "瓜子",
455
+ "电子",
456
+ "人人",
457
+ "虎虎",
458
+ }
459
+ self.punc = ":,;。?!“”‘’':,;.?!"
460
+
461
+ # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
462
+ # e.g.
463
+ # word: "家里"
464
+ # pos: "s"
465
+ # finals: ['ia1', 'i3']
466
+ def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
467
+ # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
468
+ for j, item in enumerate(word):
469
+ if (
470
+ j - 1 >= 0
471
+ and item == word[j - 1]
472
+ and pos[0] in {"n", "v", "a"}
473
+ and word not in self.must_not_neural_tone_words
474
+ ):
475
+ finals[j] = finals[j][:-1] + "5"
476
+ ge_idx = word.find("个")
477
+ if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
478
+ finals[-1] = finals[-1][:-1] + "5"
479
+ elif len(word) >= 1 and word[-1] in "的地得":
480
+ finals[-1] = finals[-1][:-1] + "5"
481
+ # e.g. 走了, 看着, 去过
482
+ # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
483
+ # finals[-1] = finals[-1][:-1] + "5"
484
+ elif (
485
+ len(word) > 1
486
+ and word[-1] in "们子"
487
+ and pos in {"r", "n"}
488
+ and word not in self.must_not_neural_tone_words
489
+ ):
490
+ finals[-1] = finals[-1][:-1] + "5"
491
+ # e.g. 桌上, 地下, 家里
492
+ elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
493
+ finals[-1] = finals[-1][:-1] + "5"
494
+ # e.g. 上来, 下去
495
+ elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
496
+ finals[-1] = finals[-1][:-1] + "5"
497
+ # 个做量词
498
+ elif (
499
+ ge_idx >= 1
500
+ and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
501
+ ) or word == "个":
502
+ finals[ge_idx] = finals[ge_idx][:-1] + "5"
503
+ else:
504
+ if (
505
+ word in self.must_neural_tone_words
506
+ or word[-2:] in self.must_neural_tone_words
507
+ ):
508
+ finals[-1] = finals[-1][:-1] + "5"
509
+
510
+ word_list = self._split_word(word)
511
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
512
+ for i, word in enumerate(word_list):
513
+ # conventional neural in Chinese
514
+ if (
515
+ word in self.must_neural_tone_words
516
+ or word[-2:] in self.must_neural_tone_words
517
+ ):
518
+ finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
519
+ finals = sum(finals_list, [])
520
+ return finals
521
+
522
+ def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
523
+ # e.g. 看不懂
524
+ if len(word) == 3 and word[1] == "不":
525
+ finals[1] = finals[1][:-1] + "5"
526
+ else:
527
+ for i, char in enumerate(word):
528
+ # "不" before tone4 should be bu2, e.g. 不怕
529
+ if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
530
+ finals[i] = finals[i][:-1] + "2"
531
+ return finals
532
+
533
+ def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
534
+ # "一" in number sequences, e.g. 一零零, 二一零
535
+ if word.find("一") != -1 and all(
536
+ [item.isnumeric() for item in word if item != "一"]
537
+ ):
538
+ return finals
539
+ # "一" between reduplication words should be yi5, e.g. 看一看
540
+ elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
541
+ finals[1] = finals[1][:-1] + "5"
542
+ # when "一" is ordinal word, it should be yi1
543
+ elif word.startswith("第一"):
544
+ finals[1] = finals[1][:-1] + "1"
545
+ else:
546
+ for i, char in enumerate(word):
547
+ if char == "一" and i + 1 < len(word):
548
+ # "一" before tone4 should be yi2, e.g. 一段
549
+ if finals[i + 1][-1] == "4":
550
+ finals[i] = finals[i][:-1] + "2"
551
+ # "一" before non-tone4 should be yi4, e.g. 一天
552
+ else:
553
+ # "一" 后面如果是标点,还读一声
554
+ if word[i + 1] not in self.punc:
555
+ finals[i] = finals[i][:-1] + "4"
556
+ return finals
557
+
558
+ def _split_word(self, word: str) -> List[str]:
559
+ word_list = jieba.cut_for_search(word)
560
+ word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
561
+ first_subword = word_list[0]
562
+ first_begin_idx = word.find(first_subword)
563
+ if first_begin_idx == 0:
564
+ second_subword = word[len(first_subword) :]
565
+ new_word_list = [first_subword, second_subword]
566
+ else:
567
+ second_subword = word[: -len(first_subword)]
568
+ new_word_list = [second_subword, first_subword]
569
+ return new_word_list
570
+
571
+ def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
572
+ if len(word) == 2 and self._all_tone_three(finals):
573
+ finals[0] = finals[0][:-1] + "2"
574
+ elif len(word) == 3:
575
+ word_list = self._split_word(word)
576
+ if self._all_tone_three(finals):
577
+ # disyllabic + monosyllabic, e.g. 蒙古/包
578
+ if len(word_list[0]) == 2:
579
+ finals[0] = finals[0][:-1] + "2"
580
+ finals[1] = finals[1][:-1] + "2"
581
+ # monosyllabic + disyllabic, e.g. 纸/老虎
582
+ elif len(word_list[0]) == 1:
583
+ finals[1] = finals[1][:-1] + "2"
584
+ else:
585
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
586
+ if len(finals_list) == 2:
587
+ for i, sub in enumerate(finals_list):
588
+ # e.g. 所有/人
589
+ if self._all_tone_three(sub) and len(sub) == 2:
590
+ finals_list[i][0] = finals_list[i][0][:-1] + "2"
591
+ # e.g. 好/喜欢
592
+ elif (
593
+ i == 1
594
+ and not self._all_tone_three(sub)
595
+ and finals_list[i][0][-1] == "3"
596
+ and finals_list[0][-1][-1] == "3"
597
+ ):
598
+ finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
599
+ finals = sum(finals_list, [])
600
+ # split idiom into two words who's length is 2
601
+ elif len(word) == 4:
602
+ finals_list = [finals[:2], finals[2:]]
603
+ finals = []
604
+ for sub in finals_list:
605
+ if self._all_tone_three(sub):
606
+ sub[0] = sub[0][:-1] + "2"
607
+ finals += sub
608
+
609
+ return finals
610
+
611
+ def _all_tone_three(self, finals: List[str]) -> bool:
612
+ return all(x[-1] == "3" for x in finals)
613
+
614
+ # merge "不" and the word behind it
615
+ # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
616
+ def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
617
+ new_seg = []
618
+ last_word = ""
619
+ for word, pos in seg:
620
+ if last_word == "不":
621
+ word = last_word + word
622
+ if word != "不":
623
+ new_seg.append((word, pos))
624
+ last_word = word[:]
625
+ if last_word == "不":
626
+ new_seg.append((last_word, "d"))
627
+ last_word = ""
628
+ return new_seg
629
+
630
+ # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
631
+ # function 2: merge single "一" and the word behind it
632
+ # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
633
+ # e.g.
634
+ # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
635
+ # output seg: [['听一听', 'v']]
636
+ def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
637
+ new_seg = []
638
+ # function 1
639
+ for i, (word, pos) in enumerate(seg):
640
+ if (
641
+ i - 1 >= 0
642
+ and word == "一"
643
+ and i + 1 < len(seg)
644
+ and seg[i - 1][0] == seg[i + 1][0]
645
+ and seg[i - 1][1] == "v"
646
+ ):
647
+ new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
648
+ else:
649
+ if (
650
+ i - 2 >= 0
651
+ and seg[i - 1][0] == "一"
652
+ and seg[i - 2][0] == word
653
+ and pos == "v"
654
+ ):
655
+ continue
656
+ else:
657
+ new_seg.append([word, pos])
658
+ seg = new_seg
659
+ new_seg = []
660
+ # function 2
661
+ for i, (word, pos) in enumerate(seg):
662
+ if new_seg and new_seg[-1][0] == "一":
663
+ new_seg[-1][0] = new_seg[-1][0] + word
664
+ else:
665
+ new_seg.append([word, pos])
666
+ return new_seg
667
+
668
+ # the first and the second words are all_tone_three
669
+ def _merge_continuous_three_tones(
670
+ self, seg: List[Tuple[str, str]]
671
+ ) -> List[Tuple[str, str]]:
672
+ new_seg = []
673
+ sub_finals_list = [
674
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
675
+ for (word, pos) in seg
676
+ ]
677
+ assert len(sub_finals_list) == len(seg)
678
+ merge_last = [False] * len(seg)
679
+ for i, (word, pos) in enumerate(seg):
680
+ if (
681
+ i - 1 >= 0
682
+ and self._all_tone_three(sub_finals_list[i - 1])
683
+ and self._all_tone_three(sub_finals_list[i])
684
+ and not merge_last[i - 1]
685
+ ):
686
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
687
+ if (
688
+ not self._is_reduplication(seg[i - 1][0])
689
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
690
+ ):
691
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
692
+ merge_last[i] = True
693
+ else:
694
+ new_seg.append([word, pos])
695
+ else:
696
+ new_seg.append([word, pos])
697
+
698
+ return new_seg
699
+
700
+ def _is_reduplication(self, word: str) -> bool:
701
+ return len(word) == 2 and word[0] == word[1]
702
+
703
+ # the last char of first word and the first char of second word is tone_three
704
+ def _merge_continuous_three_tones_2(
705
+ self, seg: List[Tuple[str, str]]
706
+ ) -> List[Tuple[str, str]]:
707
+ new_seg = []
708
+ sub_finals_list = [
709
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
710
+ for (word, pos) in seg
711
+ ]
712
+ assert len(sub_finals_list) == len(seg)
713
+ merge_last = [False] * len(seg)
714
+ for i, (word, pos) in enumerate(seg):
715
+ if (
716
+ i - 1 >= 0
717
+ and sub_finals_list[i - 1][-1][-1] == "3"
718
+ and sub_finals_list[i][0][-1] == "3"
719
+ and not merge_last[i - 1]
720
+ ):
721
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
722
+ if (
723
+ not self._is_reduplication(seg[i - 1][0])
724
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
725
+ ):
726
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
727
+ merge_last[i] = True
728
+ else:
729
+ new_seg.append([word, pos])
730
+ else:
731
+ new_seg.append([word, pos])
732
+ return new_seg
733
+
734
+ def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
735
+ new_seg = []
736
+ for i, (word, pos) in enumerate(seg):
737
+ if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
738
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
739
+ else:
740
+ new_seg.append([word, pos])
741
+ return new_seg
742
+
743
+ def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
744
+ new_seg = []
745
+ for i, (word, pos) in enumerate(seg):
746
+ if new_seg and word == new_seg[-1][0]:
747
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
748
+ else:
749
+ new_seg.append([word, pos])
750
+ return new_seg
751
+
752
+ def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
753
+ seg = self._merge_bu(seg)
754
+ try:
755
+ seg = self._merge_yi(seg)
756
+ except:
757
+ print("_merge_yi failed")
758
+ seg = self._merge_reduplication(seg)
759
+ seg = self._merge_continuous_three_tones(seg)
760
+ seg = self._merge_continuous_three_tones_2(seg)
761
+ seg = self._merge_er(seg)
762
+ return seg
763
+
764
+ def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
765
+ finals = self._bu_sandhi(word, finals)
766
+ finals = self._yi_sandhi(word, finals)
767
+ finals = self._neural_sandhi(word, pos, finals)
768
+ finals = self._three_sandhi(word, finals)
769
+ return finals