OmniEval / src /display /utils.py
zstanjj's picture
add open-source
921b8ba
raw
history blame
5.19 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
never_displayed: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("Type Symbol", "str", True, never_hidden=True)])
# auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["retrieval_model", ColumnContent, ColumnContent("Retrieval Model Plain", "markdown", False, never_displayed=True)])
auto_eval_column_dict.append(["generative_model", ColumnContent, ColumnContent("Generative Model Plain", "markdown", False, never_displayed=True)])
auto_eval_column_dict.append(["retrieval_model_link", ColumnContent, ColumnContent("Retrieval Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["generative_model_link", ColumnContent, ColumnContent("Generative Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["gen_average", ColumnContent, ColumnContent("Gen Average ⬆️", "number", True)])
auto_eval_column_dict.append(["ret_average", ColumnContent, ColumnContent("Ret Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["gen_num_params", ColumnContent, ColumnContent("Gen#Params (B)", "number", False)])
auto_eval_column_dict.append(["ret_num_params", ColumnContent, ColumnContent("Ret#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
EvalQueueColumn = make_dataclass("EvalQueueColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
# @dataclass(frozen=True)
# class EvalQueueColumn: # Queue column
# model = ColumnContent("model", "markdown", True)
# revision = ColumnContent("revision", "str", True)
# private = ColumnContent("private", "bool", True)
# precision = ColumnContent("precision", "str", True)
# weight_type = ColumnContent("weight_type", "str", "Original")
# status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
OpenSource = ModelDetails(name="open-source", symbol="🟢")
# FT = ModelDetails(name="fine-tuned", symbol="🔶")
ClosedSource = ModelDetails(name="closed-source", symbol="⭕")
# RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "open-source" in type or "🟢" in type:
return ModelType.OpenSource
if "closed-source" in type or "⭕" in type:
return ModelType.ClosedSource
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]