OlymMATH-demo / app.py
CoderBak's picture
Update app.py
3923791 verified
import os
import json
import pandas as pd
import numpy as np
import gradio as gr
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib as mpl
import re
import sqlite3
import math
import time
from huggingface_hub import hf_hub_download
import psutil
import gc
# 翻译表
SUBJECT_TRANS = {
"代数": "Algebra",
"数论": "Number Theory",
"几何": "Geometry",
"组合": "Combinatorics"
}
# 英文到中文的翻译表
SUBJECT_TRANS_EN_TO_ZH = {
"Algebra": "代数",
"Number Theory": "数论",
"Geometry": "几何",
"Combinatorics": "组合"
}
MODEL_TRANS = {
"acemath-rl-nemotron-7b": "AceMath-RL-Nemotron-7B",
"deepseek-r1-distill-qwen-1.5b": "DeepSeek-R1-Distill-Qwen-1.5B",
"light-r1-32b-ds": "Light-R1-32B-DS",
"openmath-nemotron-1.5b": "OpenMath-Nemotron-1.5B",
"openthinker2-7b": "OpenThinker2-7B",
"qwq-32b": "QwQ-32B",
"still-3-1.5b-preview": "STILL-3-1.5B-Preview",
"deepseek-r1-distill-qwen-32b": "DeepSeek-R1-Distill-Qwen-32B",
"light-r1-7b-ds": "Light-R1-7B-DS",
"openmath-nemotron-32b": "OpenMath-Nemotron-32B",
"qwen3-235b-a22b": "Qwen3-235B-A22B",
"skywork-or1-32b-preview": "Skywork-OR1-32B-Preview",
"deepscaler-1.5b-preview": "DeepScaler-1.5B-Preview",
"deepseek-r1-distill-qwen-7b": "DeepSeek-R1-Distill-Qwen-7B",
"openmath-nemotron-7b": "OpenMath-Nemotron-7B",
"deepseek-r1-distill-qwen-14b": "DeepSeek-R1-Distill-Qwen-14B",
"light-r1-14b-ds": "Light-R1-14B-DS",
"openmath-nemotron-14b": "OpenMath-Nemotron-14B",
"openthinker2-32b": "OpenThinker2-32B",
"qwen3-4b": "Qwen3-4B",
"skywork-or1-math-7b": "Skywork-OR1-Math-7B",
"skywork-or1-7b-preview": "Skywork-OR1-7B-Preview",
"qwen3-30b-a3b": "Qwen3-30B-A3B",
"deepseek-r1": "DeepSeek-R1",
"glm-z1-air": "GLM-Z1-Air",
"gemini-2.5-pro-exp-03-25": "Gemini 2.5 Pro Exp 0325",
"o3-mini-high": "OpenAI o3-mini (high)",
"qwen3-0.6b": "Qwen3-0.6B"
# 添加更多模型映射
}
# Configure matplotlib for better display
plt.style.use('ggplot')
mpl.rcParams['figure.figsize'] = (10, 6)
mpl.rcParams['font.size'] = 10
# Constants
DATASETS = ["EN-HARD", "EN-EASY", "ZH-HARD", "ZH-EASY"]
# 全局数据库实例
db = None
# 全局缓存for Reference Solutions
reference_accuracy_cache = {}
def precompute_reference_accuracies(db, reference_loader):
"""Pre-compute all reference problem accuracies for fast loading"""
global reference_accuracy_cache
if not db or not reference_loader:
return
print("Pre-computing reference problem accuracies...")
start_time = time.time()
problem_ids = reference_loader.get_all_problem_ids()
reference_accuracy_cache = {}
# 获取所有模型一次性
all_models = db.get_available_models()
print(f"Computing accuracies for {len(problem_ids)} problems across {len(all_models)} models...")
for i, pid in enumerate(problem_ids):
if i % 5 == 0: # 每5个问题打印一次进度
print(f"Processing problem {i+1}/{len(problem_ids)}: {pid}")
try:
en_unique_id = f"OlymMATH-HARD-{pid}-EN"
zh_unique_id = f"OlymMATH-HARD-{pid}-ZH"
en_accuracies = []
zh_accuracies = []
for model in all_models:
# 英文版本
try:
_, responses_en = db.get_problem_data(model, "EN-HARD", en_unique_id)
if responses_en and len(responses_en) > 0:
avg_accuracy_en = sum(r['correctness'] for r in responses_en) / len(responses_en)
en_accuracies.append(avg_accuracy_en)
except Exception:
pass
# 中文版本
try:
_, responses_zh = db.get_problem_data(model, "ZH-HARD", zh_unique_id)
if responses_zh and len(responses_zh) > 0:
avg_accuracy_zh = sum(r['correctness'] for r in responses_zh) / len(responses_zh)
zh_accuracies.append(avg_accuracy_zh)
except Exception:
pass
# 计算平均值并存储到缓存
en_avg = sum(en_accuracies) / len(en_accuracies) if en_accuracies else 0.0
zh_avg = sum(zh_accuracies) / len(zh_accuracies) if zh_accuracies else 0.0
reference_accuracy_cache[pid] = {"EN": en_avg, "ZH": zh_avg}
except Exception as e:
print(f"Error computing accuracy for problem {pid}: {e}")
reference_accuracy_cache[pid] = {"EN": 0.0, "ZH": 0.0}
elapsed_time = time.time() - start_time
print(f"✅ Pre-computation completed in {elapsed_time:.2f} seconds")
print(f"✅ Cached accuracies for {len(reference_accuracy_cache)} problems")
class ModelDatabase:
"""Database access class"""
def __init__(self, db_path):
"""Initialize database connection"""
self.db_path = db_path
# Use connection pool pattern to avoid too many connections
self.conn = sqlite3.connect(db_path, check_same_thread=False, isolation_level=None, timeout=60)
self.conn.execute("PRAGMA journal_mode = WAL") # Use Write-Ahead Logging for better performance
self.conn.execute("PRAGMA synchronous = NORMAL") # Reduce synchronization overhead
self.conn.execute("PRAGMA cache_size = -8000") # 8MB cache (比原来大4倍)
self.conn.execute("PRAGMA temp_store = MEMORY") # 临时表存储在内存中
self.conn.execute("PRAGMA mmap_size = 8589934592") # 尝试使用8GB内存映射
self.conn.row_factory = sqlite3.Row
# 创建索引以加速查询
self._ensure_indices()
# 初始化模型名称映射
self.model_display_to_real = {}
self.comp_model_display_to_real = {}
# 初始化缓存
self._cache = {}
self._problem_cache = {}
self._response_cache = {}
def _ensure_indices(self):
"""确保数据库有必要的索引"""
try:
cursor = self.conn.cursor()
# 添加最常用查询的索引
cursor.execute("CREATE INDEX IF NOT EXISTS idx_responses_model_dataset ON responses(model_name, dataset)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_responses_unique_id ON responses(unique_id)")
cursor.execute("CREATE INDEX IF NOT EXISTS idx_problems_unique_id ON problems(unique_id)")
cursor.execute("ANALYZE") # 分析表以优化查询计划
except Exception as e:
pass
def get_available_models(self):
"""Get list of all available models"""
# 缓存在实例变量中
if hasattr(self, '_models_cache') and self._models_cache:
return self._models_cache
try:
cursor = self.conn.cursor()
cursor.execute("SELECT DISTINCT model_name FROM responses ORDER BY model_name")
models = [row['model_name'] for row in cursor.fetchall()]
self._models_cache = models # 存储到实例缓存
return models
except sqlite3.OperationalError:
return []
def get_available_datasets(self):
"""Get list of all available datasets"""
# 缓存在实例变量中
if hasattr(self, '_datasets_cache') and self._datasets_cache:
return self._datasets_cache
try:
cursor = self.conn.cursor()
cursor.execute("SELECT DISTINCT dataset FROM responses ORDER BY dataset")
datasets = [row['dataset'].upper() for row in cursor.fetchall()]
self._datasets_cache = datasets # 存储到实例缓存
return datasets
except sqlite3.OperationalError:
return DATASETS
def get_model_statistics(self, model_name, dataset):
"""Get statistics for a model on a specific dataset"""
if hasattr(model_name, 'value'): model_name = model_name.value
if hasattr(dataset, 'value'): dataset = dataset.value
cache_key = f"stats_{model_name}_{dataset}"
if not hasattr(self, '_cache'): self._cache = {}
if cache_key in self._cache: return self._cache[cache_key]
cursor = self.conn.cursor()
try:
# 优化查询1: 整体准确率 - 使用索引提示加速
cursor.execute("""
SELECT COUNT(*) as total_samples, AVG(correctness) as accuracy
FROM responses INDEXED BY idx_responses_model_dataset
WHERE model_name = ? AND dataset = ?
""", (model_name, dataset.lower()))
overall_stats = cursor.fetchone()
# 优化查询2: 按学科统计 - 避免子查询和复杂JOIN
cursor.execute("""
SELECT p.subject, COUNT(r.id) as sample_count, AVG(r.correctness) as accuracy
FROM responses r JOIN problems p ON r.unique_id = p.unique_id
WHERE r.model_name = ? AND r.dataset = ?
GROUP BY p.subject ORDER BY p.subject
""", (model_name, dataset.lower()))
subject_stats_rows = cursor.fetchall()
stats_data = []
if overall_stats and overall_stats['accuracy'] is not None:
stats_data.append(["Overall Acc.", f"{overall_stats['accuracy']:.2%}"])
else:
stats_data.append(["Overall Acc.", "N/A"])
for subject_row in subject_stats_rows:
acc_val = f"{subject_row['accuracy']:.2%}" if subject_row['accuracy'] is not None else "N/A"
subject_name = subject_row['subject']
# 使用翻译表翻译科目名称
translated_subject = SUBJECT_TRANS.get(subject_name, subject_name)
stats_data.append([f"{translated_subject} Acc.", acc_val])
self._cache[cache_key] = stats_data
return stats_data
except sqlite3.OperationalError:
return [["Database Error", "No data available"]]
def get_all_model_accuracies(self, dataset):
"""获取所有模型在特定数据集上的准确率 (优化版本)"""
if hasattr(dataset, 'value'): dataset = dataset.value
cache_key = f"all_accuracies_{dataset}"
if not hasattr(self, '_cache'): self._cache = {}
if cache_key in self._cache: return self._cache[cache_key]
try:
cursor = self.conn.cursor()
# 使用索引提示加速查询
cursor.execute("""
SELECT model_name, AVG(correctness) as accuracy
FROM responses INDEXED BY idx_responses_model_dataset
WHERE dataset = ? GROUP BY model_name ORDER BY accuracy DESC
""", (dataset.lower(),))
results = [(row['model_name'], row['accuracy']) for row in cursor.fetchall()]
self._cache[cache_key] = results
return results
except sqlite3.OperationalError:
return []
def get_problems_by_model_dataset(self, model_name, dataset):
"""获取模型在特定数据集上的所有问题 (优化版本)"""
if hasattr(model_name, 'value'): model_name = model_name.value
if hasattr(dataset, 'value'): dataset = dataset.value
cache_key = f"problems_{model_name}_{dataset}"
if not hasattr(self, '_cache'): self._cache = {}
if cache_key in self._cache: return self._cache[cache_key]
cursor = self.conn.cursor()
try:
# 优化查询:使用索引提示和优化JOIN策略
cursor.execute("""
SELECT DISTINCT r.unique_id, p.problem, AVG(r.correctness) as accuracy
FROM responses r INDEXED BY idx_responses_model_dataset
JOIN problems p INDEXED BY idx_problems_unique_id ON r.unique_id = p.unique_id
WHERE r.model_name = ? AND r.dataset = ?
GROUP BY r.unique_id ORDER BY r.unique_id
""", (model_name, dataset.lower()))
results = [(row['unique_id'], row['accuracy'] if row['accuracy'] is not None else 0.0, row['problem']) for row in cursor.fetchall()]
# Sort by the integer part of unique_id
sorted_results = sorted(results, key=lambda x: int(re.search(r'\d+', x[0]).group(0)) if re.search(r'\d+', x[0]) else 0)
self._cache[cache_key] = sorted_results
return sorted_results
except sqlite3.OperationalError:
return []
def get_problem_data(self, model_name, dataset, problem_id):
"""获取问题和响应数据 (采用局部缓存策略)"""
if hasattr(model_name, 'value'): model_name = model_name.value
if hasattr(dataset, 'value'): dataset = dataset.value
if hasattr(problem_id, 'value'): problem_id = problem_id.value
# 问题数据缓存 - 问题数据通常不会变化,可长期缓存
problem_cache_key = f"problem_{problem_id}"
if problem_cache_key in self._problem_cache:
problem = self._problem_cache[problem_cache_key]
else:
if not self.conn:
return None, None
try:
cursor = self.conn.cursor()
cursor.execute("SELECT * FROM problems WHERE unique_id = ?", (problem_id,))
problem = cursor.fetchone()
if problem:
# 转为字典存储,避免SQLite连接依赖
self._problem_cache[problem_cache_key] = dict(problem)
problem = self._problem_cache[problem_cache_key]
except Exception:
return None, None
if not problem:
return None, None
# 响应数据缓存 - 更细粒度的缓存键
if model_name:
resp_cache_key = f"responses_{model_name}_{dataset}_{problem_id}"
if resp_cache_key in self._response_cache:
return problem, self._response_cache[resp_cache_key]
if not self.conn:
return problem, None
# 获取特定模型的响应
try:
cursor = self.conn.cursor()
cursor.execute("""
SELECT * FROM responses
WHERE model_name = ? AND dataset = ? AND unique_id = ?
ORDER BY response_id
""", (model_name, dataset.lower(), problem_id))
responses = cursor.fetchall()
# 转换为字典列表存储
if responses:
responses = [dict(r) for r in responses]
self._response_cache[resp_cache_key] = responses
return problem, responses
except Exception:
return problem, None
else:
# 获取所有模型对此问题的响应
resp_cache_key = f"all_responses_{dataset}_{problem_id}"
if resp_cache_key in self._response_cache:
return problem, self._response_cache[resp_cache_key]
if not self.conn:
return problem, None
try:
cursor = self.conn.cursor()
cursor.execute("""
SELECT * FROM responses
WHERE dataset = ? AND unique_id = ?
ORDER BY model_name, response_id
""", (dataset.lower(), problem_id))
responses = cursor.fetchall()
# 转换为字典列表存储
if responses:
responses = [dict(r) for r in responses]
self._response_cache[resp_cache_key] = responses
return problem, responses
except Exception:
return problem, None
def get_model_responses(self, selected_models, dataset, problem_id):
"""获取多个模型对特定问题的响应(优化版本)"""
if hasattr(dataset, 'value'): dataset = dataset.value
if hasattr(problem_id, 'value'): problem_id = problem_id.value
if not selected_models or not dataset or not problem_id:
return None, {}
# 获取问题数据 - 可共享缓存
problem, _ = self.get_problem_data(None, dataset, problem_id)
if not problem:
return None, {}
model_responses_data = {}
for model_display in selected_models:
model_display_val = model_display.value if hasattr(model_display, 'value') else model_display
# 从显示名称中获取真实模型名称
model = self.comp_model_display_to_real.get(model_display_val, model_display_val)
_, responses_for_model = self.get_problem_data(model, dataset, problem_id)
if responses_for_model:
# 尝试找到正确的响应,否则使用第一个
correct_resp = next((r for r in responses_for_model if r['correctness'] == 1), None)
model_responses_data[model_display_val] = correct_resp if correct_resp else responses_for_model[0]
else:
model_responses_data[model_display_val] = None
return problem, model_responses_data
def clear_cache(self, section=None):
"""清除指定部分或全部缓存"""
if section == 'main' or section is None:
self._cache = {}
if section == 'problem' or section is None:
self._problem_cache = {}
if section == 'response' or section is None:
self._response_cache = {}
if section == 'models' or section is None:
if hasattr(self, '_models_cache'):
self._models_cache = None
if hasattr(self, '_datasets_cache'):
self._datasets_cache = None
def close(self):
"""关闭数据库连接并释放资源"""
if hasattr(self, 'conn') and self.conn:
try:
self.conn.close()
except Exception:
pass
# 清理所有缓存
self.clear_cache()
class ReferenceDataLoader:
"""Load and manage reference solutions data"""
def __init__(self, jsonl_path):
self.jsonl_path = jsonl_path
self.reference_data = {}
self._load_data()
def _load_data(self):
"""Load data from extra.jsonl"""
try:
with open(self.jsonl_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line.strip())
unique_id = data['unique_id']
self.reference_data[unique_id] = data
except Exception as e:
print(f"Error loading reference data: {e}")
def get_problem_data(self, unique_id):
"""Get reference data for a specific problem ID"""
return self.reference_data.get(unique_id)
def get_all_problem_ids(self):
"""Get all available problem IDs"""
return sorted(self.reference_data.keys())
def calculate_reference_problem_accuracy(db, unique_id):
"""Calculate average accuracy for a reference problem across all models for both EN and ZH versions"""
try:
# 构建英文和中文版本的unique_id
en_unique_id = f"OlymMATH-HARD-{unique_id}-EN"
zh_unique_id = f"OlymMATH-HARD-{unique_id}-ZH"
print(f"Calculating accuracy for problem {unique_id}: EN={en_unique_id}, ZH={zh_unique_id}")
accuracies = {"EN": [], "ZH": []}
# 获取所有模型
all_models = db.get_available_models()
print(f"Found {len(all_models)} models in database")
for model in all_models:
# 英文版本
try:
_, responses_en = db.get_problem_data(model, "EN-HARD", en_unique_id)
if responses_en and len(responses_en) > 0:
avg_accuracy_en = sum(r['correctness'] for r in responses_en) / len(responses_en)
accuracies["EN"].append(avg_accuracy_en)
print(f" Model {model} EN: {avg_accuracy_en:.2%} ({len(responses_en)} responses)")
except Exception as e:
print(f" Error getting EN data for model {model}: {e}")
pass
# 中文版本
try:
_, responses_zh = db.get_problem_data(model, "ZH-HARD", zh_unique_id)
if responses_zh and len(responses_zh) > 0:
avg_accuracy_zh = sum(r['correctness'] for r in responses_zh) / len(responses_zh)
accuracies["ZH"].append(avg_accuracy_zh)
print(f" Model {model} ZH: {avg_accuracy_zh:.2%} ({len(responses_zh)} responses)")
except Exception as e:
print(f" Error getting ZH data for model {model}: {e}")
pass
# 计算平均值
en_avg = sum(accuracies["EN"]) / len(accuracies["EN"]) if accuracies["EN"] else 0.0
zh_avg = sum(accuracies["ZH"]) / len(accuracies["ZH"]) if accuracies["ZH"] else 0.0
print(f"Final averages for problem {unique_id}: EN={en_avg:.2%} (from {len(accuracies['EN'])} models), ZH={zh_avg:.2%} (from {len(accuracies['ZH'])} models)")
return en_avg, zh_avg
except Exception as e:
print(f"Error calculating accuracy for problem {unique_id}: {e}")
return 0.0, 0.0
def format_latex(text):
if text is None: return ""
# Process the text for proper LaTeX rendering with KaTeX
# KaTeX requires LaTeX backslashes to be preserved
# Only replace newlines with HTML breaks
text = text.replace('\n', '<br>')
# Wrap in a span that KaTeX can detect and render
return f'<span class="math-inline">{text}</span>'
def format_markdown_with_math(text):
if text is None: return ""
# Convert LaTeX delimiters first - same logic as format_solution_latex
# Convert $$xxx$$ to \[xxx\] (display math)
text = re.sub(r'\$\$(.*?)\$\$', r'\\[\1\\]', text, flags=re.DOTALL)
# Convert $xxx$ to \(xxx\) (inline math)
# Be careful not to match already converted \[...\] content
text = re.sub(r'(?<!\\)\$([^$\n]+?)\$(?!\])', r'\\(\1\\)', text)
# Convert newlines for markdown
text = text.replace('\r\n', '\n').replace('\r', '\n')
# Clean up excessive newlines
text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text)
# Debug: Print if aligned environment detected
if '\\begin{aligned}' in text:
print(f"LaTeX aligned environment detected in text (first 200 chars): {text[:200]}...")
# Return the cleaned text for Gradio's markdown component to render
return text
def get_gradient_color(accuracy, color_map='RdYlGn'):
if accuracy is None or not isinstance(accuracy, (int, float)):
return "#505050" # Default for missing or invalid accuracy
try:
# 使用更深的颜色映射
cmap = plt.colormaps.get_cmap(color_map)
rgba = cmap(float(accuracy))
# 确保颜色足够深以与白色文本形成对比
r, g, b, a = rgba
# 降低颜色亮度,确保文本可读性
r = r * 0.7
g = g * 0.7
b = b * 0.7
# 转回十六进制
hex_color = mpl.colors.rgb2hex((r, g, b, a))
return hex_color
except Exception:
return "#505050"
def get_contrasting_text_color(bg_color):
"""计算最佳对比文本颜色"""
# 如果背景是十六进制格式,转换为RGB
if bg_color.startswith('#'):
r = int(bg_color[1:3], 16)
g = int(bg_color[3:5], 16)
b = int(bg_color[5:7], 16)
else:
# 未知格式默认返回黑色
return "#000"
# 计算YIQ亮度值 - 更精确地表示人眼对亮度的感知
yiq = (r * 299 + g * 587 + b * 114) / 1000
# 黄色检测 - 黄色通常R和G高,B低
is_yellow = r > 200 and g > 200 and b < 150
# 浅绿色检测 - 通常G高,R中等,B低
is_light_green = g > 200 and r > 100 and r < 180 and b < 150
# 米色/浅棕色检测 - R高,G中高,B低
is_beige = r > 220 and g > 160 and g < 220 and b < 160
# 强制这些特定颜色使用黑色文本
if is_yellow or is_light_green or is_beige:
return "#000"
# 其他颜色根据亮度决定
return "#000" if yiq > 160 else "#fff"
def format_sample_metadata(sample, show_correctness=True):
"""生成样本元数据的HTML格式显示"""
if sample is None: return ""
sample_dict = dict(sample) if hasattr(sample, 'keys') else sample if isinstance(sample, dict) else {}
if not sample_dict: return "No sample data"
# 提取所需信息
extracted = sample_dict.get('extracted', '')
correctness = sample_dict.get('correctness', 0)
correctness_label = "✓ Correct" if correctness else "✗ Incorrect"
correctness_color = "var(--color-green)" if correctness else "var(--color-red)"
# 获取token信息
output_tokens = sample_dict.get('output_tokens', None)
reasoning_tokens = sample_dict.get('reasoning_tokens', None)
# 创建元数据HTML
html = f"<div style='font-size: 0.85em; padding: 10px; border-radius: 8px; margin-bottom: 5px;' class='dark-mode-compatible dark-mode-bg-secondary'>"
# 创建信息行
if show_correctness:
html += f"<div style='display: flex; flex-wrap: wrap; align-items: center; margin-bottom: 5px;'>"
# 正确性指示器
html += f"<span style='color: {correctness_color}; font-weight: bold; margin-right: 10px;'>{correctness_label}</span>"
# 提取的答案
if extracted:
html += f"<span style='background-color: rgba(0,0,0,0.05); padding: 2px 5px; border-radius: 3px; margin-right: 10px;'><b>Extracted:</b> ${extracted}$</span>"
# 输出token数
if output_tokens is not None:
html += f"<span style='background-color: rgba(0,0,0,0.05); padding: 2px 5px; border-radius: 3px; margin-right: 10px;'><b>Output Tokens:</b> {output_tokens}</span>"
# 推理token数 - 仅在可用时
if reasoning_tokens is not None:
html += f"<span style='background-color: rgba(0,0,0,0.05); padding: 2px 5px; border-radius: 3px;'><b>Reasoning Tokens:</b> {reasoning_tokens}</span>"
html += f"</div>"
html += "</div>"
return html
def format_sample_response(sample):
"""生成样本响应的Markdown格式显示"""
if sample is None: return ""
sample_dict = dict(sample) if hasattr(sample, 'keys') else sample if isinstance(sample, dict) else {}
if not sample_dict: return "No sample data"
# 获取响应内容
response = sample_dict.get('response', '')
# 转义特殊标签以防止被解析为HTML
# 替换<think>标签
response = response.replace("<think>", "&lt;think&gt;")
response = response.replace("</think>", "&lt;/think&gt;")
# 替换其他可能的特殊标签
response = response.replace("<reasoning>", "&lt;reasoning&gt;")
response = response.replace("</reasoning>", "&lt;/reasoning&gt;")
response = response.replace("<answer>", "&lt;answer&gt;")
response = response.replace("</answer>", "&lt;/answer&gt;")
return response
def handle_sample_select(sample_number, samples_data):
# 确保从Gradio State对象中提取实际值
if hasattr(samples_data, 'value'):
samples_list = samples_data.value
else:
samples_list = samples_data
# 确保样本编号是整数
try:
sample_idx = int(sample_number)
except ValueError:
return "Error: Sample number must be an integer.", ""
# 确保样本数据存在且为非空列表
if not samples_list or not isinstance(samples_list, list) or len(samples_list) == 0:
return "No sample data available. Please select a problem first.", ""
# 检查索引是否在有效范围内,如果不在范围内,显示错误消息
if sample_idx < 0:
err_msg = f"**Error:** Sample number {sample_idx} is out of range. Valid range is 0 to {len(samples_list) - 1}."
return err_msg, ""
if sample_idx >= len(samples_list):
err_msg = f"**Error:** Sample number {sample_idx} is out of range. Valid range is 0 to {len(samples_list) - 1}."
return err_msg, ""
# 获取所选样本的数据
try:
sample = samples_list[sample_idx]
formatted_metadata = format_sample_metadata(sample)
formatted_response = format_sample_response(sample)
return formatted_metadata, formatted_response
except Exception as e:
err_msg = f"**Error displaying sample {sample_idx}:** {str(e)}"
return err_msg, ""
def handle_first_sample(samples_data):
"""处理并显示第一个样本(索引0)"""
# 确保从Gradio State对象中提取实际值
if hasattr(samples_data, 'value'):
samples_list = samples_data.value
else:
samples_list = samples_data
# 检查样本数据是否存在
if not samples_list or not isinstance(samples_list, list) or len(samples_list) == 0:
return "No sample data available. Please select the problem and dataset first.", ""
# 直接获取第一个样本,避免错误处理逻辑
try:
sample = samples_list[0]
formatted_metadata = format_sample_metadata(sample)
formatted_response = format_sample_response(sample)
return formatted_metadata, formatted_response
except Exception as e:
err_msg = f"**Error displaying first sample:** {str(e)}"
return err_msg, ""
def handle_comparison_problem_update(problem_id, dataset_state):
"""处理比较页面的问题更新,仅更新问题和答案内容,不需要模型"""
global db
# 确保从Gradio State对象中提取实际值
dataset_name = dataset_state.value if hasattr(dataset_state, 'value') else dataset_state
problem_id_value = problem_id.value if hasattr(problem_id, 'value') else problem_id
if not problem_id_value or not dataset_name:
return "Please select a dataset and enter a problem ID.", "No answer available."
# 处理纯数字输入,构建完整unique_id
if problem_id_value and problem_id_value.isdigit():
# 构建格式:OlymMATH-HARD-0-EN 或类似格式
parts = dataset_name.split('-')
if len(parts) == 2: # 确保格式正确 (例如 "EN-HARD")
language, difficulty = parts
# 构建完整ID
problem_id_value = f"OlymMATH-{difficulty}-{problem_id_value}-{language}"
try:
# 只获取问题数据,不获取特定模型的响应
problem_data, _ = db.get_problem_data(None, dataset_name, problem_id_value)
if not problem_data:
return f"Problem not found: {problem_id_value}. Please check the ID and try again.", "No answer available."
problem_dict = dict(problem_data)
# Use format_markdown_with_math for proper rendering
problem_content = format_markdown_with_math(problem_dict.get('problem', ''))
# Use special answer formatting
answer_text = problem_dict.get('answer', '')
answer_content = format_answer_with_math(answer_text)
return problem_content, answer_content
except Exception as e:
return f"Error: {str(e)}", "No answer available."
def handle_problem_select(problem_id_from_js, current_model_state, current_dataset_state, mode='default'):
global db
# Ensure we're using the actual values from Gradio State objects
model_name = current_model_state.value if hasattr(current_model_state, 'value') else current_model_state
dataset_name = current_dataset_state.value if hasattr(current_dataset_state, 'value') else current_dataset_state
problem_id = problem_id_from_js.value if hasattr(problem_id_from_js, 'value') else problem_id_from_js
# 处理纯数字输入,构建完整unique_id
if problem_id and problem_id.isdigit():
# 构建格式:OlymMATH-HARD-0-EN 或类似格式
# 从dataset_name (例如 "EN-HARD") 解析语言和难度
parts = dataset_name.split('-')
if len(parts) == 2: # 确保格式正确 (例如 "EN-HARD")
language, difficulty = parts
# 构建完整ID
problem_id = f"OlymMATH-{difficulty}-{problem_id}-{language}"
if not problem_id or not dataset_name:
error_message = f"Missing data: problem_id='{problem_id}', dataset='{dataset_name}'"
return "Please fill in all the fields.", "No answer available.", "", gr.State([])
# For comparison mode, we might not have a model selected yet
if not model_name and mode == 'comparison':
try:
# Just get the problem data without model-specific responses
problem_data, _ = db.get_problem_data(None, dataset_name, problem_id)
if not problem_data:
error_message = f"Problem data not found: problem_id='{problem_id}', dataset='{dataset_name}'"
return f"Problem not found: {problem_id}. Please check the ID and try again.", "No answer available.", "", gr.State([])
problem_dict = dict(problem_data)
# Process problem and answer text for Markdown rendering
problem_content = format_markdown_with_math(problem_dict.get('problem', ''))
# Use special answer formatting
answer_text = problem_dict.get('answer', '')
answer_content = format_answer_with_math(answer_text)
# For comparison without model, we don't have samples to display
return problem_content, answer_content, "", gr.State([])
except Exception as e:
error_message = f"Database error: {str(e)}"
return f"Database error occurred. Please try again.", "No answer available.", "", gr.State([])
# The regular flow for model-specific data
if not model_name:
error_message = f"Missing data: model='{model_name}'"
return "Please fill in all the fields.", "No answer available.", "", gr.State([])
# The problem_id from JS should be the full unique_id. No reconstruction needed normally.
try:
problem_data, responses_data = db.get_problem_data(model_name, dataset_name, problem_id)
if not problem_data:
error_message = f"Problem data not found: problem_id='{problem_id}', model='{model_name}', dataset='{dataset_name}'"
return f"Problem not found: {problem_id}. Please check the ID and try again.", "No answer available.", "", gr.State([])
except Exception as e:
error_message = f"Database error: {str(e)}"
return f"Database error occurred. Please try again.", "No answer available.", "", gr.State([])
problem_dict = dict(problem_data)
problem_display_num = re.search(r'\d+', problem_id).group(0) if re.search(r'\d+', problem_id) else problem_id
# Process problem and answer text for Markdown rendering
problem_content = format_markdown_with_math(problem_dict.get('problem', ''))
# Use special answer formatting
answer_text = problem_dict.get('answer', '')
answer_content = format_answer_with_math(answer_text)
# Rest of the function remains the same
if not responses_data:
samples_grid_html = "<div>No samples available for this problem.</div>"
# 返回空的样本数据状态
return problem_content, answer_content, samples_grid_html, gr.State([])
else:
# 准备所有样本数据,用于后续处理
samples_data = []
for i, resp in enumerate(responses_data):
resp_dict = dict(resp)
samples_data.append(resp_dict)
# 计算正确率
correct_count = sum(1 for r in samples_data if r['correctness'])
total_samples = len(samples_data)
accuracy_on_problem = correct_count / total_samples if total_samples > 0 else 0
# 创建样本网格显示 (最多显示 64 个样本)
displayed_samples = samples_data[:64]
actual_display_count = len(displayed_samples)
# 根据模式确定每行的样本数
samples_per_row = 16 if mode == 'comparison' else 32
# 第一行: 样本 0-samples_per_row
samples_grid_html = f'<div style="display: grid; grid-template-columns: repeat({samples_per_row}, 1fr); gap: 2px; margin-bottom: 4px;">'
for i, resp in enumerate(displayed_samples[:samples_per_row]):
correctness = resp.get('correctness', 0)
bg_color = get_gradient_color(1.0 if correctness else 0.0)
# 移除点击事件和data属性,只保留纯显示
samples_grid_html += f"""
<div
class="sample-grid-btn"
style='background-color: {bg_color};
border-radius: 2px; width: 100%; height: 20px;
display: flex; align-items: center; justify-content: center;'>
<span style="color: white; font-size: 0.65em; font-weight: bold;">{i}</span>
</div>
"""
# 如果少于samples_per_row个样本,填充剩余空间
for i in range(min(actual_display_count, samples_per_row), samples_per_row):
samples_grid_html += f"""
<div style='background-color: #505050; border-radius: 2px; width: 100%; height: 20px;'></div>
"""
samples_grid_html += '</div>'
# 如果有更多样本,显示第二行
if actual_display_count > samples_per_row:
row_samples = displayed_samples[samples_per_row:2*samples_per_row]
samples_grid_html += f'<div style="display: grid; grid-template-columns: repeat({samples_per_row}, 1fr); gap: 2px; margin-bottom: 4px;">'
for i, resp in enumerate(row_samples):
actual_idx = i + samples_per_row
correctness = resp.get('correctness', 0)
bg_color = get_gradient_color(1.0 if correctness else 0.0)
samples_grid_html += f"""
<div
class="sample-grid-btn"
style='background-color: {bg_color};
border-radius: 2px; width: 100%; height: 20px;
display: flex; align-items: center; justify-content: center;'>
<span style="color: white; font-size: 0.65em; font-weight: bold;">{actual_idx}</span>
</div>
"""
# 填充剩余空间
for i in range(len(row_samples), samples_per_row):
samples_grid_html += f"""
<div style='background-color: #505050; border-radius: 2px; width: 100%; height: 20px;'></div>
"""
samples_grid_html += '</div>'
# 第三行和第四行 - 允许所有模式显示完整的64个样本
if actual_display_count > 2*samples_per_row:
# 第三行
row_samples = displayed_samples[2*samples_per_row:3*samples_per_row]
if row_samples:
samples_grid_html += f'<div style="display: grid; grid-template-columns: repeat({samples_per_row}, 1fr); gap: 2px; margin-bottom: 4px;">'
for i, resp in enumerate(row_samples):
actual_idx = i + 2*samples_per_row
correctness = resp.get('correctness', 0)
bg_color = get_gradient_color(1.0 if correctness else 0.0)
samples_grid_html += f"""
<div
class="sample-grid-btn"
style='background-color: {bg_color};
border-radius: 2px; width: 100%; height: 20px;
display: flex; align-items: center; justify-content: center;'>
<span style="color: white; font-size: 0.65em; font-weight: bold;">{actual_idx}</span>
</div>
"""
# 填充剩余空间
for i in range(len(row_samples), samples_per_row):
samples_grid_html += f"""
<div style='background-color: #505050; border-radius: 2px; width: 100%; height: 20px;'></div>
"""
samples_grid_html += '</div>'
# 第四行
if actual_display_count > 3*samples_per_row:
row_samples = displayed_samples[3*samples_per_row:4*samples_per_row]
if row_samples:
samples_grid_html += f'<div style="display: grid; grid-template-columns: repeat({samples_per_row}, 1fr); gap: 2px; margin-bottom: 4px;">'
for i, resp in enumerate(row_samples):
actual_idx = i + 3*samples_per_row
correctness = resp.get('correctness', 0)
bg_color = get_gradient_color(1.0 if correctness else 0.0)
samples_grid_html += f"""
<div
class="sample-grid-btn"
style='background-color: {bg_color};
border-radius: 2px; width: 100%; height: 20px;
display: flex; align-items: center; justify-content: center;'>
<span style="color: white; font-size: 0.65em; font-weight: bold;">{actual_idx}</span>
</div>
"""
# 填充剩余空间
for i in range(len(row_samples), samples_per_row):
samples_grid_html += f"""
<div style='background-color: #505050; border-radius: 2px; width: 100%; height: 20px;'></div>
"""
samples_grid_html += '</div>'
# 组合HTML内容
final_html = f"""
<div style='margin-top:15px; padding: 10px; border-radius: 8px;' class='dark-mode-compatible dark-mode-bg-secondary'>
<h4 style="margin-top:0;">Samples {actual_display_count} - Model Accuracy: {correct_count}/{actual_display_count} = {accuracy_on_problem:.1%}</h4>
{samples_grid_html}
</div>
"""
# 获取第一个样本作为初始样本
if samples_data:
# 这样样本会在选择问题后立即显示
return problem_content, answer_content, final_html, gr.State(samples_data)
else:
return problem_content, answer_content, final_html, gr.State([])
def create_problem_grid_html(problems, mode='default'):
"""Create HTML for problem grid buttons. The JS function will be defined globally."""
if not problems:
return "<div>No problems found for this model/dataset. Please select a model and dataset.</div>"
html_buttons = ""
try:
sorted_problems = sorted(
[(str(p[0]), float(p[1]) if p[1] is not None else 0.0, p[2]) for p in problems],
key=lambda x: int(re.search(r'\d+', x[0]).group(0)) if re.search(r'\d+', x[0]) else 0
)
except Exception as e:
return f"<div>Error displaying problems. Check logs. {e}</div>"
for pid, accuracy, _ in sorted_problems:
match = re.search(r'\d+', pid)
num_display = match.group(0) if match else pid
acc_pct = int(accuracy * 100)
# 获取背景颜色
bg_color = get_gradient_color(accuracy)
# 统一使用白色文本,添加!important确保不被覆盖
text_color = "#ffffff"
html_buttons += f"""
<div
data-problem-id=\"{pid}\"
class=\"problem-btn\"
title=\"ID: {pid} - Acc: {acc_pct}%\"
style='background-color: {bg_color}; color: {text_color} !important;
border-radius: 4px; padding: 5px; text-align: center; font-size: 0.7em;
min-height: 36px; user-select: none; width: 100%;
display: flex; flex-direction: column; justify-content: center;
overflow: hidden; text-overflow: ellipsis; white-space: nowrap;'>
<div style="font-weight: bold; color: {text_color} !important;">{num_display}</div>
<div style="color: {text_color} !important;">{acc_pct}%</div>
</div>
"""
# 添加自定义样式强制文本颜色为白色
custom_style = "<style>.problem-btn, .problem-btn div { color: white !important; }</style>"
# 根据模式设置每行显示的列数
grid_cols = 20 if mode == 'comparison' else 10
grid_html = f"{custom_style}<div style='display: grid; grid-template-columns: repeat({grid_cols}, 1fr); gap: 4px;'>{html_buttons}</div>"
return grid_html
def create_ui(db_path):
global db
db = ModelDatabase(db_path)
# Initialize reference data loader with better path handling
reference_loader = None
# Try multiple possible paths for extra.jsonl
possible_paths = [
os.path.join(os.path.dirname(db_path), "extra.jsonl"),
os.path.join(os.getcwd(), "extra.jsonl"),
"extra.jsonl"
]
for extra_jsonl_path in possible_paths:
if os.path.exists(extra_jsonl_path):
try:
reference_loader = ReferenceDataLoader(extra_jsonl_path)
print(f"Successfully loaded reference data from: {extra_jsonl_path}")
break
except Exception as e:
print(f"Error loading reference data from {extra_jsonl_path}: {e}")
continue
# If not found locally, try to download from Hugging Face
if not reference_loader:
try:
print("Attempting to download extra.jsonl from Hugging Face...")
extra_jsonl_path = hf_hub_download(
repo_id="CoderBak/OlymMATH-data",
filename="extra.jsonl",
repo_type="dataset"
)
reference_loader = ReferenceDataLoader(extra_jsonl_path)
print(f"Successfully downloaded and loaded reference data from: {extra_jsonl_path}")
except Exception as e:
print(f"Failed to download extra.jsonl from Hugging Face: {e}")
if not reference_loader:
print("Warning: extra.jsonl not found in any of the expected locations:")
for path in possible_paths:
print(f" - {path}")
print("Reference Solutions tab will not be available.")
else:
# Test the reference data availability
test_reference_data_availability(db, reference_loader)
# Pre-compute reference problem accuracies for fast loading
precompute_reference_accuracies(db, reference_loader)
# Test LaTeX formatting
test_latex_formatting()
AVAILABLE_DATASETS = db.get_available_datasets()
if not AVAILABLE_DATASETS:
AVAILABLE_DATASETS = ["EN-HARD", "EN-EASY", "ZH-HARD", "ZH-EASY"] # Fallback
# Add MathJax support to the CSS
custom_css = """
.padding.svelte-phx28p { padding: unset !important; }
body, .gradio-container { font-family: sans-serif; font-size: 0.95em; line-height: 1.6; }
.sample-btn { transition: all 0.15s ease-in-out; }
.sample-btn:hover { transform: translateY(-1px); box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
.problem-grid-container { overflow: visible !important; }
.math-content { overflow: visible !important; padding: 5px; }
.sample-response { overflow: visible !important; max-height: none !important; height: auto !important; }
h1, h2, h3, h4, h5 { margin-top: 0.8em; margin-bottom: 0.4em; color: var(--color-text); }
.gradio-tabs > div[role='tablist'] button { font-size: 0.9em; padding: 8px 12px; }
.gr-dropdown select { font-size: 0.9em; }
.gr-radio label span { font-size: 0.9em; }
.gr-checkboxgroup label span { font-size: 0.9em; }
.gr-button { font-size: 0.9em; padding: 8px 12px; }
.gr-dataframe table { font-size:0.85em; }
.gr-markdown { font-size: 1em; }
/* 适应深色模式的样式 */
.dark-mode-compatible {
background-color: var(--background-fill-primary);
color: var(--color-text);
border-color: var(--border-color-primary);
}
.dark-mode-bg-secondary {
background-color: var(--background-fill-secondary);
}
/* DataTable深色模式样式 */
.dataframe-container {
//padding: 12px;
//border-radius: 8px;
//margin-top: 10px;
}
/* MathJax Styles for Gradio's Built-in LaTeX */
.math-inline, .math-display {
font-size: 110%;
}
.math-container p {
margin: 0.5em 0;
}
/* Markdown content styles */
.gr-markdown strong {
font-weight: bold;
}
.gr-markdown em {
font-style: italic;
}
.gr-markdown ul, .gr-markdown ol {
padding-left: 2em;
margin: 0.5em 0;
}
.gr-markdown blockquote {
border-left: 3px solid #ccc;
margin: 0.5em 0;
padding-left: 1em;
color: #666;
}
.gr-markdown pre, .gr-markdown code {
background-color: rgba(0,0,0,0.05);
padding: 2px 4px;
border-radius: 3px;
font-family: monospace;
}
.gr-markdown table {
border-collapse: collapse;
margin: 0.5em 0;
}
.gr-markdown th, .gr-markdown td {
border: 1px solid #ddd;
padding: 4px 8px;
}
/* 隐藏滚动条但保留功能 */
::-webkit-scrollbar {
display: none !important;
width: 0px !important;
height: 0px !important;
}
/* 主容器禁用滚动 */
.gradio-container {
overflow-x: hidden !important;
}
/* Gradio组件容器 */
.gradio-row, .gradio-column {
overflow: visible !important;
max-height: none !important;
}
/* HTML组件 */
.gr-html {
overflow: visible !important;
max-height: none !important;
}
/* Markdown组件保持可见 */
.gr-markdown {
overflow: visible !important;
max-height: none !important;
}
/* 特定的问题网格容器 */
#ref-problem-grid-container, #problem-grid-container, #comp-problem-grid-container-left, #comp-problem-grid-container-right {
overflow: visible !important;
max-height: none !important;
height: auto !important;
}
/* 样本网格 */
.sample-grid-btn {
overflow: visible !important;
}
/* 确保内容区域不会产生滚动条 */
.gr-form, .gr-box {
overflow: visible !important;
max-height: none !important;
}
/* Reference Solutions - 禁止Solution部分的滚动 */
#ref-solution {
overflow: hidden !important;
max-height: none !important;
height: auto !important;
}
/* 确保Solution内容容器也禁止滚动 */
#ref-solution .gr-markdown {
overflow: hidden !important;
max-height: none !important;
height: auto !important;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
# Remove KaTeX loading script since we're using Gradio's native Markdown with LaTeX
current_dataset_state = gr.State(value=AVAILABLE_DATASETS[0] if AVAILABLE_DATASETS else "")
current_model_state = gr.State(value=None)
comparison_data_state = gr.State(value={})
# 添加当前样本状态
current_sample_state = gr.State(value="0")
# 添加当前问题的样本数据状态
current_samples_data_state = gr.State(value=[])
# 为Comparison标签页添加独立状态
comp_dataset_state = gr.State(value=AVAILABLE_DATASETS[0] if AVAILABLE_DATASETS else "")
comp_model_state_left = gr.State(value=None)
comp_sample_state_left = gr.State(value="0")
comp_samples_data_state_left = gr.State(value=[])
comp_model_state_right = gr.State(value=None)
comp_sample_state_right = gr.State(value="0")
comp_samples_data_state_right = gr.State(value=[])
# 创建占位符State组件替代None
dummy_state = gr.State(value=None)
# Add JavaScript for handling problem grid clicks
demo.load(lambda: None, js="""
() => {
// Handle problem button clicks for single model tab
function setupProblemGridListeners() {
document.addEventListener('click', function(e) {
if (e.target.closest('.problem-btn')) {
const problemBtn = e.target.closest('.problem-btn');
const problemId = problemBtn.getAttribute('data-problem-id');
if (problemId) {
const problemInput = document.getElementById('problem-state-input');
if (problemInput) {
problemInput.querySelector('input').value = problemId;
problemInput.querySelector('input').dispatchEvent(new Event('input', {bubbles: true}));
}
}
}
// Handle comparison problem button clicks
if (e.target.closest('#comp-problem-grid-container-left .problem-btn') ||
e.target.closest('#comp-problem-grid-container-right .problem-btn')) {
const problemBtn = e.target.closest('.problem-btn');
const problemId = problemBtn.getAttribute('data-problem-id');
if (problemId) {
const problemInput = document.getElementById('comp-problem-state-input');
if (problemInput) {
problemInput.querySelector('input').value = problemId;
problemInput.querySelector('input').dispatchEvent(new Event('input', {bubbles: true}));
}
}
}
// Handle reference problem button clicks
if (e.target.closest('#ref-problem-grid-container .ref-problem-btn')) {
const problemBtn = e.target.closest('.ref-problem-btn');
const problemId = problemBtn.getAttribute('data-problem-id');
if (problemId) {
const problemInput = document.getElementById('ref-problem-state-input');
if (problemInput) {
problemInput.querySelector('input').value = problemId;
problemInput.querySelector('input').dispatchEvent(new Event('input', {bubbles: true}));
}
}
}
});
}
// Set up listeners initially and after any DOM changes
setupProblemGridListeners();
// Re-setup listeners whenever the DOM changes (for dynamic content)
const observer = new MutationObserver(function(mutations) {
setupProblemGridListeners();
});
observer.observe(document.body, {childList: true, subtree: true});
}
""")
with gr.Tabs():
with gr.TabItem("Single Model Analysis"):
with gr.Row(variant='compact'):
with gr.Column(scale=1, min_width=280):
dataset_radio_single = gr.Radio(
choices=AVAILABLE_DATASETS,
value=AVAILABLE_DATASETS[0] if AVAILABLE_DATASETS else None,
label="Select Dataset",
interactive=True
)
model_dropdown = gr.Dropdown(
choices=[], # Populated by callback
label="Select Model",
interactive=True
)
problem_state_input = gr.Textbox(
value="",
elem_id="problem-state-input",
visible=True,
label="Enter Problem ID (0 - 99, acc. below)",
container=True,
interactive=True,
every=0.5
)
#gr.Markdown("#### Problem Grid")
problem_grid_html_output = gr.HTML(
value="<div>Select model and dataset to see problems.</div>",
elem_id="problem-grid-container"
)
gr.Markdown("#### Model Statistics")
model_stats_df = gr.DataFrame(
headers=["Metric", "Value"],
wrap=True,
elem_classes="dataframe-container dark-mode-compatible dark-mode-bg-secondary"
)
with gr.Column(scale=3, min_width=400):
with gr.Tabs():
with gr.TabItem("Problem Statement"):
problem_markdown_output = gr.Markdown(
"Please fill in all the fields.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
with gr.TabItem("Reference Answer"):
answer_markdown_output = gr.Markdown(
"No answer available.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
# 样本网格
samples_grid_output = gr.HTML("")
# 在样本网格下方添加样本选择输入框
with gr.Row():
# 样本选择输入框
sample_number_input = gr.Textbox(
value="0",
elem_id="sample-number-input",
visible=True,
label="Enter Sample Number (0 - 63)",
container=True,
interactive=True,
every=0.5
)
# 样本内容显示区域 - 使用HTML和Markdown组件分别显示元数据和响应内容
sample_metadata_output = gr.HTML(
value="<div>Select a problem first to view samples.</div>",
elem_classes="sample-metadata dark-mode-bg-secondary",
elem_id="sample-metadata-area"
)
sample_response_output = gr.Markdown(
value="Select a problem first to view samples.",
elem_classes="sample-response dark-mode-bg-secondary",
elem_id="sample-response-area",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
with gr.TabItem("Model Comparison"):
# 共享部分
with gr.Row(variant='compact'):
comp_dataset_radio = gr.Radio(
choices=AVAILABLE_DATASETS,
value=AVAILABLE_DATASETS[0] if AVAILABLE_DATASETS else None,
label="Select Dataset",
interactive=True
)
comp_problem_state_input = gr.Textbox(
value="",
elem_id="comp-problem-state-input",
visible=True,
label="Enter Problem ID (0 - 99, acc. below)",
container=True,
interactive=True,
every=0.5
)
# 移动的共享问题和答案显示到这里
with gr.Row(variant='compact'):
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("Problem Statement"):
comp_problem_markdown_output = gr.Markdown(
"Please select models and problem.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
with gr.TabItem("Reference Answer"):
comp_answer_markdown_output = gr.Markdown(
"No answer available.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
# 左右两部分模型比较
with gr.Row(variant='compact'):
# 左侧模型
with gr.Column(scale=1):
comp_model_dropdown_left = gr.Dropdown(
choices=[], # Populated by callback
label="Select Model 1",
interactive=True
)
gr.Markdown("#### Problem Grid")
comp_problem_grid_html_output_left = gr.HTML(
value="<div>Select model and dataset to see problems.</div>",
elem_id="comp-problem-grid-container-left"
)
# 样本网格和选择器
comp_samples_grid_output_left = gr.HTML("")
with gr.Row():
comp_sample_number_input_left = gr.Textbox(
value="0",
elem_id="comp-sample-number-input-left",
visible=True,
label="Enter Sample Number (0 - 63)",
container=True,
interactive=True,
every=0.5
)
# 样本内容显示区域 - 使用HTML和Markdown组件分别显示元数据和响应内容
comp_sample_metadata_output_left = gr.HTML(
value="<div>Select a problem first to view samples.</div>",
elem_classes="sample-metadata dark-mode-bg-secondary",
elem_id="comp-sample-metadata-area-left"
)
comp_sample_response_output_left = gr.Markdown(
value="Select a problem first to view samples.",
elem_classes="sample-response dark-mode-bg-secondary",
elem_id="comp-sample-response-area-left",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
# 右侧模型
with gr.Column(scale=1):
comp_model_dropdown_right = gr.Dropdown(
choices=[], # Populated by callback
label="Select Model 2",
interactive=True
)
gr.Markdown("#### Problem Grid")
comp_problem_grid_html_output_right = gr.HTML(
value="<div>Select model and dataset to see problems.</div>",
elem_id="comp-problem-grid-container-right"
)
# 样本网格和选择器
comp_samples_grid_output_right = gr.HTML("")
with gr.Row():
comp_sample_number_input_right = gr.Textbox(
value="0",
elem_id="comp-sample-number-input-right",
visible=True,
label="Enter Sample Number (0 - 63)",
container=True,
interactive=True,
every=0.5
)
# 样本内容显示区域 - 使用HTML和Markdown组件分别显示元数据和响应内容
comp_sample_metadata_output_right = gr.HTML(
value="<div>Select a problem first to view samples.</div>",
elem_classes="sample-metadata dark-mode-bg-secondary",
elem_id="comp-sample-metadata-area-right"
)
comp_sample_response_output_right = gr.Markdown(
value="Select a problem first to view samples.",
elem_classes="sample-response dark-mode-bg-secondary",
elem_id="comp-sample-response-area-right",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
with gr.TabItem("Reference Solutions"):
with gr.Row(variant='compact'):
with gr.Column(scale=1, min_width=280):
ref_problem_state_input = gr.Textbox(
value="",
elem_id="ref-problem-state-input",
visible=True,
label="Enter Problem ID",
container=True,
interactive=True,
every=0.5
)
with gr.Column(scale=3, min_width=400):
gr.Markdown("#### Problem Grid (OlymMATH-HARD: All models avg. acc. - Top: EN, Bottom: ZH)")
ref_problem_grid_html_output = gr.HTML(
value="<div>Loading reference data...</div>",
elem_id="ref-problem-grid-container"
)
# 问题内容显示区域 - 左右分布
with gr.Row(variant='compact'):
# 左侧:问题信息
with gr.Column(scale=1):
gr.Markdown("#### Problem (EN)")
ref_problem_en_output = gr.Markdown(
"Please select a problem.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
gr.Markdown("#### Problem (ZH)")
ref_problem_zh_output = gr.Markdown(
"Please select a problem.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
gr.Markdown("#### Subject")
ref_subject_output = gr.Markdown("Please select a problem.")
gr.Markdown("#### Answer")
ref_answer_output = gr.Markdown(
"Please select a problem.",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True}
]
)
# 右侧:解答
with gr.Column(scale=1):
gr.Markdown("#### Solution")
ref_solution_output = gr.Markdown(
"Please select a problem.",
elem_id="ref-solution",
latex_delimiters=[
{"left": "$", "right": "$", "display": False},
{"left": "$$", "right": "$$", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\begin{align}", "right": "\\end{align}", "display": True},
{"left": "\\begin{aligned}", "right": "\\end{aligned}", "display": True},
{"left": "\\begin{equation}", "right": "\\end{equation}", "display": True}
]
)
# --- Event Handlers ---
def update_available_models_for_dropdowns(selected_dataset):
# This function can be used to update model lists if they are dataset-dependent
# For now, assume get_available_models() gets all models irrespective of dataset for dropdown population
all_models = db.get_available_models()
# For single model tab, format with accuracy on the selected dataset
single_model_options = []
model_to_display_map = {} # 映射用于存储真实模型名称到显示名称的映射
if selected_dataset and all_models:
model_accs = db.get_all_model_accuracies(selected_dataset)
model_acc_map = {name: acc for name, acc in model_accs}
single_model_options = []
for name in all_models:
# 使用MODEL_TRANS映射模型名称
display_name = MODEL_TRANS.get(name, name)
acc_display = f" ({model_acc_map.get(name, 0):.1%})" if model_acc_map.get(name) is not None else ""
display_text = f"{display_name}{acc_display}"
single_model_options.append(display_text)
model_to_display_map[display_text] = name # 存储映射关系
else:
for name in all_models:
display_name = MODEL_TRANS.get(name, name)
single_model_options.append(display_name)
model_to_display_map[display_name] = name
# 将映射存储到全局数据库对象中以便后续使用
db.model_display_to_real = model_to_display_map
# For comparison tab, also use formatted model names with accuracy
comp_model_choices = single_model_options # 使用和单模型相同的选项,包含准确率
db.comp_model_display_to_real = model_to_display_map # 使用相同的映射
return gr.Dropdown(choices=single_model_options if single_model_options else [], value=None), \
gr.Dropdown(choices=comp_model_choices if comp_model_choices else [], value=None)
def update_problem_grid_and_stats(selected_model_formatted, selected_dataset, mode='default'):
if not selected_model_formatted or not selected_dataset:
# Return empty/default values for all outputs, including the state
return gr.DataFrame(value=[]), gr.HTML("<div>Please select a model and dataset first.</div>"), None
# 从映射中获取真实模型名称
model_name = db.model_display_to_real.get(selected_model_formatted, selected_model_formatted)
# 如果找不到确切匹配,可能是因为准确率等动态内容导致,尝试前缀匹配
if model_name == selected_model_formatted:
for display_name, real_name in db.model_display_to_real.items():
if selected_model_formatted.startswith(display_name.split(" (")[0]):
model_name = real_name
break
stats_data = db.get_model_statistics(model_name, selected_dataset)
problem_list = db.get_problems_by_model_dataset(model_name, selected_dataset)
grid_html = create_problem_grid_html(problem_list, mode=mode)
# Correctly return the actual value for the current_model_state output
return gr.DataFrame(value=stats_data), gr.HTML(value=grid_html), model_name
# Single Model Tab interactions
dataset_radio_single.change(
fn=update_available_models_for_dropdowns,
inputs=[dataset_radio_single],
outputs=[model_dropdown, comp_model_dropdown_left]
).then(
lambda ds: (gr.DataFrame(value=[]), gr.HTML("<div>Select a model.</div>"), gr.State(value=None), ds, ""), # 清空所有输出,包括problem_state_input
inputs=[dataset_radio_single],
outputs=[model_stats_df, problem_grid_html_output, current_model_state, current_dataset_state, problem_state_input]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
).then(
lambda: ("Please fill in all the fields.", "No answer available.", "", gr.State([]), "<div>Select a problem first to view samples.</div>", ""),
inputs=[],
outputs=[problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state, sample_metadata_output, sample_response_output]
)
# Initial population of model dropdowns based on default dataset
demo.load(
fn=update_available_models_for_dropdowns,
inputs=[current_dataset_state], # Uses initial value of state
outputs=[model_dropdown, comp_model_dropdown_left]
).then(
lambda ds_val: (gr.DataFrame(value=[]), gr.HTML("<div>Select a model.</div>"), ds_val), # Also update dataset state for single tab
inputs=[current_dataset_state],
outputs=[model_stats_df, problem_grid_html_output, current_dataset_state]
).then(
lambda: ("Please fill in all the fields.", "No answer available.", "", gr.State([]), "<div>Select a problem first to view samples.</div>", ""),
inputs=[],
outputs=[problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state, sample_metadata_output, sample_response_output]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
)
# ==== 比较页面事件处理 ====
# 初始化两侧模型下拉列表
demo.load(
fn=update_available_models_for_dropdowns,
inputs=[comp_dataset_state],
outputs=[model_dropdown, comp_model_dropdown_left]
).then(
fn=update_available_models_for_dropdowns,
inputs=[comp_dataset_state],
outputs=[model_dropdown, comp_model_dropdown_right]
)
# 数据集改变事件
comp_dataset_radio.change(
fn=lambda ds: ds,
inputs=[comp_dataset_radio],
outputs=[comp_dataset_state]
).then(
fn=update_available_models_for_dropdowns,
inputs=[comp_dataset_state],
outputs=[model_dropdown, comp_model_dropdown_left]
).then(
fn=update_available_models_for_dropdowns,
inputs=[comp_dataset_state],
outputs=[model_dropdown, comp_model_dropdown_right]
).then(
lambda: ("Please select a dataset and enter a problem ID.", "No answer available."),
inputs=[],
outputs=[comp_problem_markdown_output, comp_answer_markdown_output]
)
# 为比较页面的问题ID添加单独的更新逻辑
comp_problem_state_input.change(
fn=handle_comparison_problem_update,
inputs=[comp_problem_state_input, comp_dataset_state],
outputs=[comp_problem_markdown_output, comp_answer_markdown_output]
)
# 创建包装函数,预设模式参数
def update_problem_grid_comparison(model, dataset):
return update_problem_grid_and_stats(model, dataset, mode='comparison')
# 问题选择的包装函数
def handle_problem_select_comparison(problem_id, model_state, dataset_state):
return handle_problem_select(problem_id, model_state, dataset_state, mode='comparison')
# 修改model_dropdown的处理函数,以重新查询当前问题响应 - 比较页面左侧
def update_model_and_requery_problem_left(model_dropdown_value, current_dataset, current_problem_id):
# 首先更新模型统计和问题网格
_, grid_html, new_model_state = update_problem_grid_comparison(model_dropdown_value, current_dataset)
# 如果有选择的问题ID,重新查询它的响应
if current_problem_id:
problem_content, answer_content, samples_grid_html, new_samples_data = handle_problem_select_comparison(current_problem_id, new_model_state, current_dataset)
# 获取第一个样本的内容
first_metadata, first_response = handle_first_sample(new_samples_data)
return grid_html, new_model_state, problem_content, answer_content, samples_grid_html, new_samples_data, first_metadata, first_response
else:
# 没有问题ID,只返回更新的模型状态
return grid_html, new_model_state, "Please enter a problem ID.", "No answer available.", "", gr.State([]), "<div>Select a problem first to view samples.</div>", ""
# 修改model_dropdown的处理函数,以重新查询当前问题响应 - 比较页面右侧
def update_model_and_requery_problem_right(model_dropdown_value, current_dataset, current_problem_id):
# 首先更新模型统计和问题网格
_, grid_html, new_model_state = update_problem_grid_comparison(model_dropdown_value, current_dataset)
# 如果有选择的问题ID,重新查询它的响应
if current_problem_id:
# 对于右侧,我们不需要更新问题和答案内容
_, _, samples_grid_html, new_samples_data = handle_problem_select_comparison(current_problem_id, new_model_state, current_dataset)
# 获取第一个样本的内容
first_metadata, first_response = handle_first_sample(new_samples_data)
return grid_html, new_model_state, samples_grid_html, new_samples_data, first_metadata, first_response
else:
# 没有问题ID,只返回更新的模型状态
return grid_html, new_model_state, "", gr.State([]), "<div>Select a problem first to view samples.</div>", ""
# 左侧模型选择事件
comp_model_dropdown_left.change(
fn=update_model_and_requery_problem_left,
inputs=[comp_model_dropdown_left, comp_dataset_state, comp_problem_state_input],
outputs=[comp_problem_grid_html_output_left, comp_model_state_left, comp_problem_markdown_output, comp_answer_markdown_output, comp_samples_grid_output_left, comp_samples_data_state_left, comp_sample_metadata_output_left, comp_sample_response_output_left]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[comp_sample_number_input_left]
)
# 右侧模型选择事件
comp_model_dropdown_right.change(
fn=update_model_and_requery_problem_right,
inputs=[comp_model_dropdown_right, comp_dataset_state, comp_problem_state_input],
outputs=[comp_problem_grid_html_output_right, comp_model_state_right, comp_samples_grid_output_right, comp_samples_data_state_right, comp_sample_metadata_output_right, comp_sample_response_output_right]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[comp_sample_number_input_right]
)
# 左侧样本选择
comp_sample_number_input_left.change(
fn=handle_sample_select,
inputs=[comp_sample_number_input_left, comp_samples_data_state_left],
outputs=[comp_sample_metadata_output_left, comp_sample_response_output_left]
)
# 右侧样本选择
comp_sample_number_input_right.change(
fn=handle_sample_select,
inputs=[comp_sample_number_input_right, comp_samples_data_state_right],
outputs=[comp_sample_metadata_output_right, comp_sample_response_output_right]
)
# 为比较页面问题选择事件添加处理
comp_problem_state_input.change(
fn=handle_problem_select_comparison,
inputs=[comp_problem_state_input, comp_model_state_left, comp_dataset_state],
outputs=[comp_problem_markdown_output, comp_answer_markdown_output, comp_samples_grid_output_left, comp_samples_data_state_left]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[comp_sample_number_input_left]
).then(
fn=handle_first_sample,
inputs=[comp_samples_data_state_left],
outputs=[comp_sample_metadata_output_left, comp_sample_response_output_left]
)
# 问题选择事件 - 右侧模型
comp_problem_state_input.change(
fn=handle_problem_select_comparison,
inputs=[comp_problem_state_input, comp_model_state_right, comp_dataset_state],
outputs=[dummy_state, dummy_state, comp_samples_grid_output_right, comp_samples_data_state_right]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[comp_sample_number_input_right]
).then(
fn=handle_first_sample,
inputs=[comp_samples_data_state_right],
outputs=[comp_sample_metadata_output_right, comp_sample_response_output_right]
)
# This is the crucial link: problem_state_input is changed by user, triggers this Python callback.
problem_state_input.change(
fn=handle_problem_select,
inputs=[problem_state_input, current_model_state, current_dataset_state],
outputs=[problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
).then(
fn=handle_first_sample,
inputs=[current_samples_data_state],
outputs=[sample_metadata_output, sample_response_output]
)
# Also listen for direct input event which may be more reliable than change
problem_state_input.input(
fn=handle_problem_select,
inputs=[problem_state_input, current_model_state, current_dataset_state],
outputs=[problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
).then(
fn=handle_first_sample,
inputs=[current_samples_data_state],
outputs=[sample_metadata_output, sample_response_output]
)
# 添加样本编号的事件处理
sample_number_input.change(
fn=handle_sample_select,
inputs=[sample_number_input, current_samples_data_state],
outputs=[sample_metadata_output, sample_response_output]
)
sample_number_input.input(
fn=handle_sample_select,
inputs=[sample_number_input, current_samples_data_state],
outputs=[sample_metadata_output, sample_response_output]
)
# 修改model_dropdown.change处理函数,以重新查询当前问题响应
def update_model_and_requery_problem(model_dropdown_value, current_dataset, current_problem_id):
# 首先更新模型统计和问题网格
stats_df, grid_html, new_model_state = update_problem_grid_and_stats(model_dropdown_value, current_dataset)
# 如果有选择的问题ID,重新查询它的响应
if current_problem_id:
problem_content, answer_content, samples_grid_html, new_samples_data = handle_problem_select(current_problem_id, new_model_state, current_dataset)
# 获取第一个样本的内容
first_metadata, first_response = handle_first_sample(new_samples_data)
return stats_df, grid_html, new_model_state, problem_content, answer_content, samples_grid_html, new_samples_data, first_metadata, first_response
else:
# 没有问题ID,只返回更新的模型状态
return stats_df, grid_html, new_model_state, "Please fill in all the fields.", "No answer available.", "", gr.State([]), "<div>Select a problem first to view samples.</div>", ""
model_dropdown.change(
fn=update_model_and_requery_problem,
inputs=[model_dropdown, current_dataset_state, problem_state_input],
outputs=[model_stats_df, problem_grid_html_output, current_model_state, problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state, sample_metadata_output, sample_response_output]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
)
# 为引用解决方案标签页添加处理器
# 初始化引用问题网格
demo.load(
fn=lambda: create_reference_problem_grid_html(reference_loader, db),
inputs=[],
outputs=[ref_problem_grid_html_output]
)
# 引用问题选择事件
ref_problem_state_input.change(
fn=handle_reference_problem_select,
inputs=[ref_problem_state_input, gr.State(reference_loader)],
outputs=[ref_problem_en_output, ref_problem_zh_output, ref_subject_output, ref_answer_output, ref_solution_output]
)
# This is the crucial link: problem_state_input is changed by user, triggers this Python callback.
problem_state_input.change(
fn=handle_problem_select,
inputs=[problem_state_input, current_model_state, current_dataset_state],
outputs=[problem_markdown_output, answer_markdown_output, samples_grid_output, current_samples_data_state]
).then(
# 重置Sample Number为0
fn=lambda: "0",
inputs=[],
outputs=[sample_number_input]
).then(
fn=handle_first_sample,
inputs=[current_samples_data_state],
outputs=[sample_metadata_output, sample_response_output]
)
return demo
def monitor_memory_usage():
"""监控内存使用情况并在必要时释放缓存"""
global db
try:
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
memory_usage_mb = memory_info.rss / 1024 / 1024
# 如果内存使用超过12GB (激进设置),清理缓存
if memory_usage_mb > 12000: # 12GB
if db:
db.clear_cache('response') # 优先清理响应缓存
gc.collect()
# 如果内存使用超过14GB,更激进地清理
if memory_usage_mb > 14000: # 14GB
if db:
db.clear_cache() # 清理所有缓存
gc.collect()
return f"Memory: {memory_usage_mb:.1f} MB"
except Exception as e:
return "Memory monitor error"
def create_reference_problem_grid_html(reference_loader, db):
"""Create HTML for reference problem grid with average accuracies (using cache)"""
global reference_accuracy_cache
if not db:
return "<div>Database not available.</div>"
if not reference_loader:
return "<div><strong>No reference data available.</strong><br>Please ensure <code>extra.jsonl</code> file is in the same directory as the database file or in the current working directory.</div>"
problem_ids = reference_loader.get_all_problem_ids()
if not problem_ids:
return "<div>No reference problems found in extra.jsonl file.</div>"
# 如果缓存为空,返回加载提示
if not reference_accuracy_cache:
return "<div><strong>Computing problem accuracies...</strong><br>This may take a moment on first load.</div>"
print(f"Using cached accuracies for {len(problem_ids)} reference problems")
# 创建两行网格:第一行英文,第二行中文
custom_style = "<style>.ref-problem-btn, .ref-problem-btn div { color: white !important; }</style>"
html_en = ""
html_zh = ""
# 按数字顺序排序
sorted_problem_ids = sorted(problem_ids, key=int)
for pid in sorted_problem_ids:
# 从缓存获取准确率
accuracy_data = reference_accuracy_cache.get(pid, {"EN": 0.0, "ZH": 0.0})
en_acc = accuracy_data["EN"]
zh_acc = accuracy_data["ZH"]
# 英文版本按钮
en_bg_color = get_gradient_color(en_acc)
en_acc_pct = int(en_acc * 100)
html_en += f"""
<div
data-problem-id="{pid}"
class="ref-problem-btn"
title="ID: {pid} (EN) - Avg Acc: {en_acc_pct}%"
style='background-color: {en_bg_color}; color: white !important;
border-radius: 4px; padding: 5px; text-align: center; font-size: 0.7em;
min-height: 36px; user-select: none; width: 100%;
display: flex; flex-direction: column; justify-content: center;
overflow: hidden; text-overflow: ellipsis; white-space: nowrap; cursor: pointer;'>
<div style="font-weight: bold; color: white !important;">{pid}</div>
<div style="color: white !important;">{en_acc_pct}%</div>
</div>
"""
# 中文版本按钮
zh_bg_color = get_gradient_color(zh_acc)
zh_acc_pct = int(zh_acc * 100)
html_zh += f"""
<div
data-problem-id="{pid}"
class="ref-problem-btn"
title="ID: {pid} (ZH) - Avg Acc: {zh_acc_pct}%"
style='background-color: {zh_bg_color}; color: white !important;
border-radius: 4px; padding: 5px; text-align: center; font-size: 0.7em;
min-height: 36px; user-select: none; width: 100%;
display: flex; flex-direction: column; justify-content: center;
overflow: hidden; text-overflow: ellipsis; white-space: nowrap; cursor: pointer;'>
<div style="font-weight: bold; color: white !important;">{pid}</div>
<div style="color: white !important;">{zh_acc_pct}%</div>
</div>
"""
# 计算网格列数(根据问题数量)
grid_cols = len(sorted_problem_ids) if len(sorted_problem_ids) <= 30 else 30
# 组合成完整的HTML
grid_html = f"""
{custom_style}
<div style='margin-bottom: 10px;'>
<div style='display: grid; grid-template-columns: repeat({grid_cols}, 1fr); gap: 2px;'>{html_en}</div>
</div>
<div>
<div style='display: grid; grid-template-columns: repeat({grid_cols}, 1fr); gap: 2px;'>{html_zh}</div>
</div>
"""
return grid_html
def handle_reference_problem_select(problem_id, reference_loader):
"""Handle reference problem selection and display all information"""
if not problem_id or not reference_loader:
return ("Please select a problem.", "Please select a problem.",
"Please select a problem.", "Please select a problem.", "Please select a problem.")
try:
problem_id_int = int(problem_id)
except ValueError:
return ("Please enter a valid problem ID.", "Please enter a valid problem ID.",
"Please enter a valid problem ID.", "Please enter a valid problem ID.", "Please enter a valid problem ID.")
reference_data = reference_loader.get_problem_data(problem_id_int)
if not reference_data:
error_msg = f"Problem {problem_id_int} not found in reference data."
return (error_msg, error_msg, "No subject available.", "No answer available.", "Solution not available.")
# 格式化各个部分
en_problem = format_markdown_with_math(reference_data.get('en_problem', 'Problem (EN) not available.'))
zh_problem = format_markdown_with_math(reference_data.get('zh_problem', 'Problem (ZH) not available.'))
# 处理答案格式 - 使用特殊的答案格式处理
answer_text = reference_data.get('answer', 'No answer available.')
answer = format_answer_with_math(answer_text)
# 科目显示
subject_en = reference_data.get('subject', 'Unknown')
subject_zh = SUBJECT_TRANS_EN_TO_ZH.get(subject_en, subject_en)
subject_display = f"**{subject_en}** / **{subject_zh}**"
# Solution - 使用solution字段,通常是中文解答
solution_text = reference_data.get('solution', 'Solution not available.')
if solution_text != 'Solution not available.':
solution = format_solution_latex(solution_text)
else:
solution = solution_text
return (en_problem, zh_problem, subject_display, answer, solution)
def test_reference_data_availability(db, reference_loader):
"""Test function to check if reference data is available"""
print("=== Reference Data Availability Test ===")
# Test database
if not db:
print("❌ Database is not available")
return False
# Check database schema
try:
cursor = db.conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables = [row[0] for row in cursor.fetchall()]
print(f"✅ Database tables: {tables}")
# Check problems table
cursor.execute("SELECT COUNT(*) FROM problems")
problem_count = cursor.fetchone()[0]
print(f"✅ Problems table: {problem_count} problems")
# Check responses table
cursor.execute("SELECT COUNT(*) FROM responses")
response_count = cursor.fetchone()[0]
print(f"✅ Responses table: {response_count} responses")
# Check unique datasets
cursor.execute("SELECT DISTINCT dataset FROM responses")
datasets = [row[0] for row in cursor.fetchall()]
print(f"✅ Available datasets: {datasets}")
# Check some sample unique_ids from problems
cursor.execute("SELECT unique_id FROM problems LIMIT 10")
sample_ids = [row[0] for row in cursor.fetchall()]
print(f"✅ Sample problem unique_ids: {sample_ids}")
except Exception as e:
print(f"❌ Error checking database schema: {e}")
models = db.get_available_models()
print(f"✅ Database connected: {len(models)} models available")
# Test reference loader
if not reference_loader:
print("❌ Reference loader is not available (extra.jsonl not found)")
return False
problem_ids = reference_loader.get_all_problem_ids()
print(f"✅ Reference loader: {len(problem_ids)} problems available: {problem_ids}")
# Test a specific problem (simplified test)
if problem_ids:
test_id = problem_ids[0]
en_unique_id = f"OlymMATH-HARD-{test_id}-EN"
zh_unique_id = f"OlymMATH-HARD-{test_id}-ZH"
print(f"Testing with constructed IDs: {en_unique_id}, {zh_unique_id}")
# Check if problems exist in database
problem_en, responses_en = db.get_problem_data(None, "EN-HARD", en_unique_id)
problem_zh, responses_zh = db.get_problem_data(None, "ZH-HARD", zh_unique_id)
print(f"Test problem {test_id}:")
print(f" EN problem exists: {problem_en is not None}")
print(f" ZH problem exists: {problem_zh is not None}")
if responses_en:
print(f" EN responses: {len(responses_en)} found")
if responses_zh:
print(f" ZH responses: {len(responses_zh)} found")
print("=== End Test ===")
return True
def test_latex_formatting():
"""Test function to verify LaTeX environment processing"""
test_text = """
易知,1, 4, 6, 7, 9 这五个数中的任意两个数之差均不为 4 或 7.
$$
\\begin{aligned}
\\sum_{n=1}^{2023}f_{n} &= \\sum_{k=0}^{183}\\sum_{i=0}^{10}f_{11k+i} \\\\
&= \\sum_{k=0}^{183}(11 \\times 5k+1+2+3+5 \\times 4+2 \\times 5) \\\\
&= 55 \\times \\frac{183 \\times 184}{2}+184 \\times 36 \\\\
&= 932604.
\\end{aligned}
$$
故答案为:$\\boxed{932604}$.
"""
formatted = format_markdown_with_math(test_text)
print("=== LaTeX Formatting Test ===")
print("Original text contains \\begin{aligned}:", "\\begin{aligned}" in test_text)
print("Formatted text contains \\begin{aligned}:", "\\begin{aligned}" in formatted)
print("Formatted text (first 300 chars):", formatted[:300])
print("=== End Test ===")
return formatted
def format_solution_latex(text):
"""Preprocess solution text by converting LaTeX delimiters from MathJax to KaTeX format"""
if text is None:
return ""
# Convert $$xxx$$ to \[xxx\] (display math)
# Use non-greedy matching and handle multiple lines
text = re.sub(r'\$\$(.*?)\$\$', r'\\[\1\\]', text, flags=re.DOTALL)
# Convert $xxx$ to \(xxx\) (inline math)
# Be careful not to match already converted \[...\] content
text = re.sub(r'(?<!\\)\$([^$\n]+?)\$(?!\])', r'\\(\1\\)', text)
# Convert newlines for markdown
text = text.replace('\r\n', '\n').replace('\r', '\n')
# Clean up excessive newlines
text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text)
return text
def format_answer_with_math(text):
"""Special formatting for answer fields - manually wrap with \(\) delimiters"""
if text is None or text.strip() == "" or text == "No answer available.":
return text
# Convert newlines for markdown
text = text.replace('\r\n', '\n').replace('\r', '\n')
# Convert $$xxx$$ to $xxx$ first (same as before)
text = re.sub(r'\$\$(.*?)\$\$', r'$\1$', text, flags=re.DOTALL)
# Check if answer already contains dollar signs, if not add them
if '$' not in text and text.strip():
text = f"${text}$"
# Now convert $xxx$ to \(xxx\) for proper rendering
text = re.sub(r'(?<!\\)\$([^$\n]+?)\$', r'\\(\1\\)', text)
# Clean up excessive newlines
text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text)
return text
# 修改主函数以使用优化策略
if __name__ == "__main__":
DB_PATH = "data.db"
# 检查数据库文件是否存在,如果不存在则从 Hugging Face 下载
if not os.path.exists(DB_PATH):
try:
DB_PATH = hf_hub_download(
repo_id="CoderBak/OlymMATH-data",
filename="data.db",
repo_type="dataset"
)
except Exception as e:
# 创建一个显示错误信息的简单 Gradio 应用
with gr.Blocks() as error_demo:
gr.Markdown(f"# Error: Database Download Failed\n{str(e)}")
error_demo.launch(server_name="0.0.0.0")
exit(1)
if os.path.exists(DB_PATH):
# 创建UI并启动
db = ModelDatabase(DB_PATH)
# 添加清理函数
def cleanup():
global db
if db:
db.close()
# 注册清理函数
import atexit
atexit.register(cleanup)
# 创建UI
main_demo = create_ui(DB_PATH)
# 使用兼容的启动参数
main_demo.launch(
server_name="0.0.0.0",
share=False,
inbrowser=False
)
else:
# 创建一个显示错误信息的简单 Gradio 应用
with gr.Blocks() as error_demo:
gr.Markdown(f"# Error: Database Not Found\nCould not find `{DB_PATH}`. Please ensure the database file is correctly placed and accessible.")
error_demo.launch(server_name="0.0.0.0")