Spaces:
Build error
Build error
import logging | |
import gradio as gr | |
from config import * | |
from videomatch import index_hashes_for_video, get_decent_distance, \ | |
get_video_index, compare_videos, get_change_points, get_videomatch_df | |
from plot import plot_comparison, plot_multi_comparison, plot_segment_comparison | |
logging.basicConfig() | |
logging.getLogger().setLevel(logging.INFO) | |
def get_comparison(url, target, MIN_DISTANCE = 4): | |
""" Function for Gradio to combine all helper functions""" | |
video_index, hash_vectors = get_video_index(url) | |
target_index, _ = get_video_index(target) | |
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = MIN_DISTANCE) | |
fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE) | |
return fig | |
def get_auto_comparison(url, target, smoothing_window_size=10, method="CUSUM"): | |
""" Function for Gradio to combine all helper functions""" | |
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE) | |
if distance == None: | |
return None | |
raise gr.Error("No matches found!") | |
video_index, hash_vectors = get_video_index(url) | |
target_index, _ = get_video_index(target) | |
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = distance) | |
# fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = distance) | |
df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False) | |
change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method=method) | |
fig = plot_segment_comparison(df, change_points) | |
return fig | |
def get_auto_edit_decision(url, target, smoothing_window_size=10): | |
""" Function for Gradio to combine all helper functions""" | |
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE) | |
if distance == None: | |
return None | |
raise gr.Error("No matches found!") | |
video_index, hash_vectors = get_video_index(url) | |
target_index, _ = get_video_index(target) | |
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_index, MIN_DISTANCE = distance) | |
df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False) | |
change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method="ROBUST") | |
edit_decision_list = [] | |
for cp in change_points: | |
decision = f"Video at time {cp.start_time} returns {cp.metric}" | |
# edit_decision_list.append(f"Video at time {cp.start_time} returns {cp.metric}") | |
fig = plot_multi_comparison(df, change_points) | |
return fig | |
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1", | |
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1", | |
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1", | |
"https://drive.google.com/uc?id=1XW0niHR1k09vPNv1cp6NvdGXe7FHJc1D&export=download", | |
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"] | |
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal, | |
inputs="text", | |
outputs="text", | |
examples=video_urls, cache_examples=True) | |
compare_iface = gr.Interface(fn=get_comparison, | |
inputs=["text", "text", gr.Slider(2, 30, 4, step=2)], | |
outputs="plot", | |
examples=[[x, video_urls[-1]] for x in video_urls[:-1]]) | |
auto_compare_iface = gr.Interface(fn=get_auto_comparison, | |
inputs=["text", "text", gr.Slider(1, 50, 10, step=1), gr.Dropdown(choices=["CUSUM", "Robust"], value="Robust")], | |
outputs="plot", | |
examples=[[x, video_urls[-1]] for x in video_urls[:-1]]) | |
iface = gr.TabbedInterface([auto_compare_iface, compare_iface, index_iface,], ["AutoCompare", "Compare", "Index"]) | |
if __name__ == "__main__": | |
import matplotlib | |
matplotlib.use('SVG') # To be able to plot in gradio | |
iface.launch(show_error=True) | |
#iface.launch(auth=("test", "test"), share=True, debug=True) |