Spaces:
Runtime error
Runtime error
import sys | |
sys.path.append(".") | |
from PIL import Image | |
import torch | |
from torchvision.transforms import ToTensor, Compose, Resize, Normalize | |
from torch.nn import functional as F | |
from opensora.models.ae.videobase import CausalVAEModel | |
import argparse | |
import numpy as np | |
def preprocess(video_data: torch.Tensor, short_size: int = 128) -> torch.Tensor: | |
transform = Compose( | |
[ | |
ToTensor(), | |
Normalize((0.5), (0.5)), | |
Resize(size=short_size), | |
] | |
) | |
outputs = transform(video_data) | |
outputs = outputs.unsqueeze(0).unsqueeze(2) | |
return outputs | |
def main(args: argparse.Namespace): | |
image_path = args.image_path | |
resolution = args.resolution | |
device = args.device | |
vqvae = CausalVAEModel.load_from_checkpoint(args.ckpt) | |
vqvae.eval() | |
vqvae = vqvae.to(device) | |
with torch.no_grad(): | |
x_vae = preprocess(Image.open(image_path), resolution) | |
x_vae = x_vae.to(device) | |
latents = vqvae.encode(x_vae) | |
recon = vqvae.decode(latents.sample()) | |
x = recon[0, :, 0, :, :] | |
x = x.squeeze() | |
x = x.detach().cpu().numpy() | |
x = np.clip(x, -1, 1) | |
x = (x + 1) / 2 | |
x = (255*x).astype(np.uint8) | |
x = x.transpose(1,2,0) | |
image = Image.fromarray(x) | |
image.save(args.rec_path) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--image-path', type=str, default='') | |
parser.add_argument('--rec-path', type=str, default='') | |
parser.add_argument('--ckpt', type=str, default='') | |
parser.add_argument('--resolution', type=int, default=336) | |
parser.add_argument('--device', type=str, default='cuda') | |
args = parser.parse_args() | |
main(args) | |