Spaces:
Sleeping
Sleeping
RMakushkin
commited on
Commit
•
767c62b
1
Parent(s):
a5132f5
Delete func.py
Browse files
func.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from transformers import BertModel, BertTokenizer
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
|
7 |
-
|
8 |
-
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased-sentence")
|
9 |
-
model = BertModel.from_pretrained("DeepPavlov/rubert-base-cased-sentence")
|
10 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
11 |
-
|
12 |
-
|
13 |
-
def filter_by_ganre(df: pd.DataFrame, ganre_list: list):
|
14 |
-
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))]
|
15 |
-
filt_ind = filtered_df.index.to_list()
|
16 |
-
return filt_ind
|
17 |
-
|
18 |
-
# def mean_pooling(model_output, attention_mask):
|
19 |
-
# token_embeddings = model_output['last_hidden_state']
|
20 |
-
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
21 |
-
# sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
22 |
-
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
23 |
-
# return sum_embeddings / sum_mask
|
24 |
-
|
25 |
-
# def recommendation(filt_ind: list, embeddings: np.array, user_text: str, n=10):
|
26 |
-
# token_user_text = tokenizer(user_text, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
27 |
-
# user_embeddings = torch.Tensor().to(device)
|
28 |
-
# model.to(device)
|
29 |
-
# model.eval()
|
30 |
-
# with torch.no_grad():
|
31 |
-
# batch = {k: v.to(device) for k, v in token_user_text.items()}
|
32 |
-
# outputs = model(**batch)
|
33 |
-
# user_embeddings = torch.cat([user_embeddings, mean_pooling(outputs, batch['attention_mask'])])
|
34 |
-
# user_embeddings = user_embeddings.cpu().numpy()
|
35 |
-
# cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embeddings.reshape(1, -1))
|
36 |
-
# df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
37 |
-
# dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
38 |
-
# return dict_topn
|
39 |
-
|
40 |
-
|
41 |
-
def embed_user(filt_ind: list, embeddings:np.array, user_text: str, n=10):
|
42 |
-
tokens = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True).to(device)
|
43 |
-
model.to(device)
|
44 |
-
model.eval()
|
45 |
-
with torch.no_grad():
|
46 |
-
outputs = model(**tokens)
|
47 |
-
user_embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy().reshape(1, -1)
|
48 |
-
return user_embedding
|
49 |
-
|
50 |
-
# cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embedding.reshape(1, -1))
|
51 |
-
# df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
52 |
-
# dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
53 |
-
# return dict_topn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|