booydar commited on
Commit
95cd467
1 Parent(s): 46ab7fd

add new results and model description tab

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +17 -1
  2. info/ARMT.md +1 -0
  3. info/GPT.md +27 -0
  4. info/RMT.md +3 -0
  5. notebooks/add_results_copy_paste.ipynb +264 -0
  6. results/ARMT/qa1/1000000.csv +2 -0
  7. results/ARMT/qa1/10000000.csv +2 -0
  8. results/ARMT/qa1/128000.csv +2 -0
  9. results/ARMT/qa1/16000.csv +2 -0
  10. results/ARMT/qa1/32000.csv +2 -0
  11. results/ARMT/qa1/4000.csv +2 -0
  12. results/ARMT/qa1/500000.csv +2 -0
  13. results/ARMT/qa1/64000.csv +2 -0
  14. results/ARMT/qa1/8000.csv +2 -0
  15. results/ARMT/qa2/1000000.csv +2 -0
  16. results/ARMT/qa2/10000000.csv +2 -0
  17. results/ARMT/qa2/128000.csv +2 -0
  18. results/ARMT/qa2/16000.csv +2 -0
  19. results/ARMT/qa2/32000.csv +2 -0
  20. results/ARMT/qa2/4000.csv +2 -0
  21. results/ARMT/qa2/500000.csv +2 -0
  22. results/ARMT/qa2/64000.csv +2 -0
  23. results/ARMT/qa2/8000.csv +2 -0
  24. results/ARMT/qa3/1000000.csv +2 -0
  25. results/ARMT/qa3/10000000.csv +2 -0
  26. results/ARMT/qa3/128000.csv +2 -0
  27. results/ARMT/qa3/16000.csv +2 -0
  28. results/ARMT/qa3/32000.csv +2 -0
  29. results/ARMT/qa3/4000.csv +2 -0
  30. results/ARMT/qa3/500000.csv +2 -0
  31. results/ARMT/qa3/64000.csv +2 -0
  32. results/ARMT/qa3/8000.csv +2 -0
  33. results/ARMT/qa4/1000000.csv +2 -0
  34. results/ARMT/qa4/10000000.csv +2 -0
  35. results/ARMT/qa4/128000.csv +2 -0
  36. results/ARMT/qa4/16000.csv +2 -0
  37. results/ARMT/qa4/32000.csv +2 -0
  38. results/ARMT/qa4/4000.csv +2 -0
  39. results/ARMT/qa4/500000.csv +2 -0
  40. results/ARMT/qa4/64000.csv +2 -0
  41. results/ARMT/qa4/8000.csv +2 -0
  42. results/ARMT/qa5/1000000.csv +2 -0
  43. results/ARMT/qa5/10000000.csv +2 -0
  44. results/ARMT/qa5/128000.csv +2 -0
  45. results/ARMT/qa5/16000.csv +2 -0
  46. results/ARMT/qa5/32000.csv +2 -0
  47. results/ARMT/qa5/4000.csv +2 -0
  48. results/ARMT/qa5/500000.csv +2 -0
  49. results/ARMT/qa5/64000.csv +2 -0
  50. results/ARMT/qa5/8000.csv +2 -0
app.py CHANGED
@@ -22,10 +22,21 @@ def make_default_md():
22
 
23
 
24
  def make_arena_leaderboard_md(total_models):
25
- leaderboard_md = f"""Total #models: **{total_models}**. Last updated: Feb 28, 2024."""
26
  return leaderboard_md
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  def model_hyperlink(model_name, link):
31
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
@@ -110,6 +121,11 @@ def build_leaderboard_tab(folders):
110
  column_widths=[50, 200] + [100] * len(msg_lengths),
111
  wrap=True,
112
  )
 
 
 
 
 
113
  return [md_1]
114
 
115
  block_css = """
 
22
 
23
 
24
  def make_arena_leaderboard_md(total_models):
25
+ leaderboard_md = f"""Total #models: **{total_models}**. Last updated: Mar 29, 2024."""
26
  return leaderboard_md
27
 
28
 
29
+ def make_model_desc_md(f_len):
30
+ desc_md = make_arena_leaderboard_md(f_len)
31
+ models = next(os.walk('info'))[2]
32
+ for model in models:
33
+ model_name = model.split('.md')[0]
34
+ with open(os.path.join('info', model), 'r') as f:
35
+ description = f.read()
36
+
37
+ desc_md += f"\n\n### {model_name}\n{description}"
38
+ return desc_md
39
+
40
 
41
  def model_hyperlink(model_name, link):
42
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
 
121
  column_widths=[50, 200] + [100] * len(msg_lengths),
122
  wrap=True,
123
  )
124
+
125
+ with gr.Tab("Model description", id=tab_id + 1):
126
+ desc_md = make_model_desc_md(len(folders))
127
+ gr.Markdown(desc_md, elem_id="leaderboard_markdown")
128
+
129
  return [md_1]
130
 
131
  block_css = """
info/ARMT.md ADDED
@@ -0,0 +1 @@
 
 
1
+ ARMT is an associative memory version of RMT. Please refer to [ [code](https://github.com/RodkinIvan/t5-experiments/) ]
info/GPT.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ We use the following prompts for GPT-4-Turbo and Mistral models:
2
+
3
+ #### qa1
4
+
5
+ ```
6
+ I will give you context with the facts about positions of different persons hidden
7
+ in some random text and a question. You need to answer the question based only on
8
+ the information from the facts. If a person was in different locations, use the
9
+ latest location to answer the question.
10
+ <example>
11
+ Charlie went to the hallway. Judith come back to the kitchen. Charlie travelled to
12
+ balcony. Where is Charlie?
13
+ Answer: The most recent location of Charlie is balcony.
14
+ </example>
15
+ <example>
16
+ Alan moved to the garage. Charlie went to the beach. Alan went to the shop. Rouse
17
+ travelled to balcony. Where is Alan?
18
+ Answer: The most recent location of Alan is shop.
19
+ </example>
20
+ <context>
21
+ {qa1 query with noise}
22
+ </context>
23
+ QUESTION: {qa1 question}
24
+ Always return your answer in the following format: The most recent location of
25
+ ’person’ is ’location’. Do not write anything else after that.
26
+ ```
27
+ For prompts for other qa tasks please refer to the [ [paper](https://arxiv.org/abs/2402.10790) ].
info/RMT.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ RMT is a memory-augmented segment-level recurrent Transformer. We implement our memory mechanism as a wrapper for any Hugging Face model by adding special memory tokens to the input sequence. The model is trained to control both memory operations and sequence representations processing.
2
+
3
+ See: [ [paper](https://arxiv.org/abs/2402.10790) ] and [ [code](https://github.com/booydar/recurrent-memory-transformer/tree/babilong-release) ] for **Recurrent Memory Transformer** implementation and training examples.
notebooks/add_results_copy_paste.ipynb ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "import pandas as pd\n",
11
+ "import re"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 42,
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "out_path = \"results/\"\n",
21
+ "lens = [0, 4000,8000,16000,32000,64000,128000,500000,1000000,10000000]"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 77,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "!rm -r results/*"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 78,
36
+ "metadata": {},
37
+ "outputs": [
38
+ {
39
+ "name": "stdout",
40
+ "output_type": "stream",
41
+ "text": [
42
+ "RMT ['100,0', '100,0', '99,9', '100,0', '100,0', '99,6', '99,1', '96,4', '94,2', '76,4']\n",
43
+ "RMT-Retrieval ['100,0', '99,9', '99,8', '99,9', '99,9', '99,7', '99,5', '97,5', '97,4', '86,0']\n",
44
+ "GPT4 ['100,0', '97,0', '93,0', '66,0', '43,0', '30,0', '24,0', '', '', '']\n",
45
+ "GPT4 + RAG by sentences ['', '61,5', '59,0', '55,5', '55,5', '55,0', '55,5', '51,0', '51,0', '19,5']\n",
46
+ "GPT4 + Retrieve sentences (new 100 samples) ['', '63,0', '61,0', '60,0', '60,0', '56,0', '55,0', '55,0', '52,0', '28,0']\n",
47
+ "GPT4 + RAG by segments ['', '70,0', '58,0', '54,0', '42,0', '24,0', '16,0', '12,0', '12,0', '4,0']\n",
48
+ "GPT-3.5 ['', '88,0', '44,0', '24,0', '', '', '', '', '', '']\n",
49
+ "GPT-3.5 fine-tuned (trained on 100 samples) ['', '84,0', '72,0', '64,0', '', '', '', '', '', '']\n",
50
+ "GPT-3.5 fine-tuned (trained on 1000 samples) ['', '94,0', '96,0', '95,0', '', '', '', '', '', '']\n",
51
+ "ARMT ['', '99,9', '99,9', '99,9', '100,0', '100,0', '100,0', '99,9', '99,4', '97,4']\n",
52
+ "Mistral medium (xxB) ['', '73,0', '75,0', '58,0', '33,0', '', '', '', '', '']\n"
53
+ ]
54
+ }
55
+ ],
56
+ "source": [
57
+ "task_name = 'qa1'\n",
58
+ "qa1_results = '''RMT\t100,0\t100,0\t99,9\t100,0\t100,0\t99,6\t99,1\t96,4\t94,2\t76,4\n",
59
+ "RMT-Retrieval\t100,0\t99,9\t99,8\t99,9\t99,9\t99,7\t99,5\t97,5\t97,4\t86,0\n",
60
+ "GPT4\t100,0\t97,0\t93,0\t66,0\t43,0\t30,0\t24,0\t\t\t\n",
61
+ "GPT4 + RAG by sentences\t\t61,5\t59,0\t55,5\t55,5\t55,0\t55,5\t51,0\t51,0\t19,5\n",
62
+ "GPT4 + Retrieve sentences (new 100 samples)\t\t63,0\t61,0\t60,0\t60,0\t56,0\t55,0\t55,0\t52,0\t28,0\n",
63
+ "GPT4 + RAG by segments\t\t70,0\t58,0\t54,0\t42,0\t24,0\t16,0\t12,0\t12,0\t4,0\n",
64
+ "GPT-3.5\t\t88,0\t44,0\t24,0\t\t\t\t\t\t\n",
65
+ "GPT-3.5 fine-tuned (trained on 100 samples)\t\t84,0\t72,0\t64,0\t\t\t\t\t\t\n",
66
+ "GPT-3.5 fine-tuned (trained on 1000 samples)\t\t94,0\t96,0\t95,0\t\t\t\t\t\t\n",
67
+ "ARMT\t\t99,9\t99,9\t99,9\t100,0\t100,0\t100,0\t99,9\t99,4\t97,4\n",
68
+ "Mistral medium (xxB)\t\t73,0\t75,0\t58,0\t33,0\t\t\t\t\t'''\n",
69
+ "results = qa1_results.split('\\n')\n",
70
+ "for r in results:\n",
71
+ " model_name = r.split('\\t')[0]\n",
72
+ " numbers = r.split('\\t')[1:] \n",
73
+ " print(model_name, numbers)\n",
74
+ "\n",
75
+ " model_dir = os.path.join(out_path, model_name)\n",
76
+ " os.makedirs(model_dir, exist_ok=True)\n",
77
+ "\n",
78
+ " model_task_dir = os.path.join(model_dir, task_name)\n",
79
+ " os.makedirs(model_task_dir, exist_ok=True)\n",
80
+ "\n",
81
+ " for l, n in zip(lens, numbers):\n",
82
+ " len_file = os.path.join(model_task_dir, f'{l}.csv')\n",
83
+ " n = re.sub(',', '.', n)\n",
84
+ " try:\n",
85
+ " n = float(n) / 100\n",
86
+ " df = pd.DataFrame({\"result\": n}, index=[0])\n",
87
+ " df.to_csv(len_file, index=False)\n",
88
+ " except ValueError:\n",
89
+ " n = None\n",
90
+ " \n",
91
+ "\n",
92
+ "\n"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": 79,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "task_name = 'qa2'\n",
102
+ "qa2_results = '''RMT\t97,7\t98,9\t98,4\t96,1\t87,4\t72,7\t56,3\t32\t25,5\t16,2\n",
103
+ "RMT-Retrieval\t97,7\t98,0\t97,2\t93,4\t85,6\t71,6\t54,9\t31,8\t26,3\t13,0\n",
104
+ "GPT4\t84,0\t72,0\t60,0\t52,0\t24,0\t4,0\t8,0\t\t\t\n",
105
+ "ARMT\t\t99,8\t100,0\t100,0\t100,0\t100,0\t100,0\t99,7\t99,6\t81,7'''\n",
106
+ "results = qa2_results.split('\\n')\n",
107
+ "for r in results:\n",
108
+ " model_name = r.split('\\t')[0]\n",
109
+ " numbers = r.split('\\t')[1:] \n",
110
+ "\n",
111
+ " model_dir = os.path.join(out_path, model_name)\n",
112
+ " os.makedirs(model_dir, exist_ok=True)\n",
113
+ "\n",
114
+ " model_task_dir = os.path.join(model_dir, task_name)\n",
115
+ " os.makedirs(model_task_dir, exist_ok=True)\n",
116
+ "\n",
117
+ " for l, n in zip(lens, numbers):\n",
118
+ " len_file = os.path.join(model_task_dir, f'{l}.csv')\n",
119
+ " n = re.sub(',', '.', n)\n",
120
+ " try:\n",
121
+ " n = float(n) / 100\n",
122
+ " df = pd.DataFrame({\"result\": n}, index=[0])\n",
123
+ " df.to_csv(len_file, index=False)\n",
124
+ " except ValueError:\n",
125
+ " n = None\n",
126
+ " \n",
127
+ "\n",
128
+ "\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": 80,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "task_name = 'qa3'\n",
138
+ "qa3_results = '''RMT\t94,4\t83,6\t73,8\t70,2\t61,8\t51,9\t42,9\t25,9\t24,8\t21\n",
139
+ "RMT-Retrieval\t94,4\t83,8\t76,0\t72,0\t62,5\t52,9\t41,9\t25,5\t22,2\t16,4\n",
140
+ "GPT4\t56,0\t32,0\t24,0\t28,0\t28,0\t12,0\t4,0\t\t\t\n",
141
+ "ARMT\t\t90,9\t92,0\t92,7\t90,7\t88,3\t80,4\t67,9\t56,4\t27,5'''\n",
142
+ "results = qa3_results.split('\\n')\n",
143
+ "for r in results:\n",
144
+ " model_name = r.split('\\t')[0]\n",
145
+ " numbers = r.split('\\t')[1:] \n",
146
+ "\n",
147
+ " model_dir = os.path.join(out_path, model_name)\n",
148
+ " os.makedirs(model_dir, exist_ok=True)\n",
149
+ "\n",
150
+ " model_task_dir = os.path.join(model_dir, task_name)\n",
151
+ " os.makedirs(model_task_dir, exist_ok=True)\n",
152
+ "\n",
153
+ " for l, n in zip(lens, numbers):\n",
154
+ " len_file = os.path.join(model_task_dir, f'{l}.csv')\n",
155
+ " n = re.sub(',', '.', n)\n",
156
+ " try:\n",
157
+ " n = float(n) / 100\n",
158
+ " df = pd.DataFrame({\"result\": n}, index=[0])\n",
159
+ " df.to_csv(len_file, index=False)\n",
160
+ " except ValueError:\n",
161
+ " n = None\n",
162
+ " \n",
163
+ "\n",
164
+ "\n"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": 81,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": [
173
+ "qa4_results = '''RMT\t99,8\t82,3\t81,9\t79,2\t70,5\t51,2\t40\t29,4\t27,3\t17,2\n",
174
+ "RMT-Retrieval\t99,8\t82,50\t79,70\t76,40\t72,20\t58,80\t50,10\t32,10\t26,00\t14,00\n",
175
+ "GPT4\t100,0\t72,0\t60,0\t72,0\t64,0\t20,0\t36,0\t\t\t\n",
176
+ "ARMT\t\t100,0\t100,0\t100,0\t100,0\t100,0\t100,0\t100,0\t99,8\t93,2'''\n",
177
+ "\n",
178
+ "task_name = 'qa4'\n",
179
+ "results = qa4_results.split('\\n')\n",
180
+ "for r in results:\n",
181
+ " model_name = r.split('\\t')[0]\n",
182
+ " numbers = r.split('\\t')[1:] \n",
183
+ "\n",
184
+ " model_dir = os.path.join(out_path, model_name)\n",
185
+ " os.makedirs(model_dir, exist_ok=True)\n",
186
+ "\n",
187
+ " model_task_dir = os.path.join(model_dir, task_name)\n",
188
+ " os.makedirs(model_task_dir, exist_ok=True)\n",
189
+ "\n",
190
+ " for l, n in zip(lens, numbers):\n",
191
+ " len_file = os.path.join(model_task_dir, f'{l}.csv')\n",
192
+ " n = re.sub(',', '.', n)\n",
193
+ " try:\n",
194
+ " n = float(n) / 100\n",
195
+ " df = pd.DataFrame({\"result\": n}, index=[0])\n",
196
+ " df.to_csv(len_file, index=False)\n",
197
+ " except ValueError:\n",
198
+ " n = None"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": 82,
204
+ "metadata": {},
205
+ "outputs": [],
206
+ "source": [
207
+ "qa5_results = '''RMT\t98,4\t99,3\t99,1\t97,4\t95,5\t88,5\t78,1\t56,4\t48\t27,3\n",
208
+ "RMT-Retrieval\t98,4\t98,80\t98,90\t98,20\t93,60\t86,20\t77,40\t55,90\t49,90\t35,00\n",
209
+ "GPT4\t96,0\t100,0\t84,0\t68,0\t52,0\t64,0\t48,0\t\t\t\n",
210
+ "ARMT\t\t99,5\t99,3\t99,4\t98,9\t98,9\t98,8\t98,2\t97,8\t87,0'''\n",
211
+ "\n",
212
+ "task_name = 'qa5'\n",
213
+ "results = qa5_results.split('\\n')\n",
214
+ "for r in results:\n",
215
+ " model_name = r.split('\\t')[0]\n",
216
+ " numbers = r.split('\\t')[1:] \n",
217
+ "\n",
218
+ " model_dir = os.path.join(out_path, model_name)\n",
219
+ " os.makedirs(model_dir, exist_ok=True)\n",
220
+ "\n",
221
+ " model_task_dir = os.path.join(model_dir, task_name)\n",
222
+ " os.makedirs(model_task_dir, exist_ok=True)\n",
223
+ "\n",
224
+ " for l, n in zip(lens, numbers):\n",
225
+ " len_file = os.path.join(model_task_dir, f'{l}.csv')\n",
226
+ " n = re.sub(',', '.', n)\n",
227
+ " try:\n",
228
+ " n = float(n) / 100\n",
229
+ " df = pd.DataFrame({\"result\": n}, index=[0])\n",
230
+ " df.to_csv(len_file, index=False)\n",
231
+ " except ValueError:\n",
232
+ " n = None"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": null,
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": []
241
+ }
242
+ ],
243
+ "metadata": {
244
+ "kernelspec": {
245
+ "display_name": "Python 3",
246
+ "language": "python",
247
+ "name": "python3"
248
+ },
249
+ "language_info": {
250
+ "codemirror_mode": {
251
+ "name": "ipython",
252
+ "version": 3
253
+ },
254
+ "file_extension": ".py",
255
+ "mimetype": "text/x-python",
256
+ "name": "python",
257
+ "nbconvert_exporter": "python",
258
+ "pygments_lexer": "ipython3",
259
+ "version": "3.11.3"
260
+ }
261
+ },
262
+ "nbformat": 4,
263
+ "nbformat_minor": 2
264
+ }
results/ARMT/qa1/1000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9940000000000001
results/ARMT/qa1/10000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9740000000000001
results/ARMT/qa1/128000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa1/16000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9990000000000001
results/ARMT/qa1/32000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa1/4000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9990000000000001
results/ARMT/qa1/500000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9990000000000001
results/ARMT/qa1/64000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa1/8000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9990000000000001
results/ARMT/qa2/1000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.996
results/ARMT/qa2/10000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.8170000000000001
results/ARMT/qa2/128000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa2/16000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa2/32000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa2/4000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.998
results/ARMT/qa2/500000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.997
results/ARMT/qa2/64000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa2/8000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa3/1000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.564
results/ARMT/qa3/10000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.275
results/ARMT/qa3/128000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.804
results/ARMT/qa3/16000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.927
results/ARMT/qa3/32000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.907
results/ARMT/qa3/4000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.909
results/ARMT/qa3/500000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.679
results/ARMT/qa3/64000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.883
results/ARMT/qa3/8000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.92
results/ARMT/qa4/1000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.998
results/ARMT/qa4/10000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.932
results/ARMT/qa4/128000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/16000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/32000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/4000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/500000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/64000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa4/8000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 1.0
results/ARMT/qa5/1000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.978
results/ARMT/qa5/10000000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.87
results/ARMT/qa5/128000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.988
results/ARMT/qa5/16000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9940000000000001
results/ARMT/qa5/32000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9890000000000001
results/ARMT/qa5/4000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.995
results/ARMT/qa5/500000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.982
results/ARMT/qa5/64000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.9890000000000001
results/ARMT/qa5/8000.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ result
2
+ 0.993