Spaces:
Running
Running
update
Browse files- .gitignore +1 -0
- README.md +11 -7
- app.py +449 -0
- index.html +0 -57
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
hf_token
|
README.md
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
|
|
|
|
7 |
pinned: false
|
8 |
-
license:
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: LMSys Chatbot Arena Leaderboard
|
3 |
+
emoji: ππ€
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
tags:
|
12 |
+
- leaderboard
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
2 |
+
import ast
|
3 |
+
import argparse
|
4 |
+
import glob
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
|
12 |
+
# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
|
13 |
+
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
|
14 |
+
|
15 |
+
|
16 |
+
basic_component_values = [None] * 6
|
17 |
+
leader_component_values = [None] * 5
|
18 |
+
|
19 |
+
|
20 |
+
def make_default_md(arena_df, elo_results):
|
21 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
22 |
+
total_models = len(arena_df)
|
23 |
+
|
24 |
+
leaderboard_md = f"""
|
25 |
+
# π LMSYS Chatbot Arena Leaderboard
|
26 |
+
| [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
|
27 |
+
|
28 |
+
LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals.
|
29 |
+
We've collected over **200,000** human preference votes to rank LLMs with the Elo ranking system.
|
30 |
+
"""
|
31 |
+
return leaderboard_md
|
32 |
+
|
33 |
+
|
34 |
+
def make_arena_leaderboard_md(arena_df):
|
35 |
+
total_votes = sum(arena_df["num_battles"]) // 2
|
36 |
+
total_models = len(arena_df)
|
37 |
+
|
38 |
+
leaderboard_md = f"""
|
39 |
+
Total #models: **{total_models}**. Total #votes: **{total_votes}**. Last updated: Feb 15, 2024.
|
40 |
+
|
41 |
+
Contribute your vote π³οΈ at [chat.lmsys.org](https://chat.lmsys.org)! Find more analysis in the [notebook]({notebook_url}).
|
42 |
+
"""
|
43 |
+
return leaderboard_md
|
44 |
+
|
45 |
+
|
46 |
+
def make_full_leaderboard_md(elo_results):
|
47 |
+
leaderboard_md = f"""
|
48 |
+
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
|
49 |
+
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 200K+ user votes to compute Elo ratings.
|
50 |
+
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
|
51 |
+
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.
|
52 |
+
|
53 |
+
π» Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
|
54 |
+
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
|
55 |
+
Higher values are better for all benchmarks. Empty cells mean not available.
|
56 |
+
"""
|
57 |
+
return leaderboard_md
|
58 |
+
|
59 |
+
|
60 |
+
def make_leaderboard_md_live(elo_results):
|
61 |
+
leaderboard_md = f"""
|
62 |
+
# Leaderboard
|
63 |
+
Last updated: {elo_results["last_updated_datetime"]}
|
64 |
+
{elo_results["leaderboard_table"]}
|
65 |
+
"""
|
66 |
+
return leaderboard_md
|
67 |
+
|
68 |
+
|
69 |
+
def update_elo_components(max_num_files, elo_results_file):
|
70 |
+
log_files = get_log_files(max_num_files)
|
71 |
+
|
72 |
+
# Leaderboard
|
73 |
+
if elo_results_file is None: # Do live update
|
74 |
+
battles = clean_battle_data(log_files)
|
75 |
+
elo_results = report_elo_analysis_results(battles)
|
76 |
+
|
77 |
+
leader_component_values[0] = make_leaderboard_md_live(elo_results)
|
78 |
+
leader_component_values[1] = elo_results["win_fraction_heatmap"]
|
79 |
+
leader_component_values[2] = elo_results["battle_count_heatmap"]
|
80 |
+
leader_component_values[3] = elo_results["bootstrap_elo_rating"]
|
81 |
+
leader_component_values[4] = elo_results["average_win_rate_bar"]
|
82 |
+
|
83 |
+
# Basic stats
|
84 |
+
basic_stats = report_basic_stats(log_files)
|
85 |
+
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
|
86 |
+
|
87 |
+
md1 = "### Action Histogram\n"
|
88 |
+
md1 += basic_stats["action_hist_md"] + "\n"
|
89 |
+
|
90 |
+
md2 = "### Anony. Vote Histogram\n"
|
91 |
+
md2 += basic_stats["anony_vote_hist_md"] + "\n"
|
92 |
+
|
93 |
+
md3 = "### Model Call Histogram\n"
|
94 |
+
md3 += basic_stats["model_hist_md"] + "\n"
|
95 |
+
|
96 |
+
md4 = "### Model Call (Last 24 Hours)\n"
|
97 |
+
md4 += basic_stats["num_chats_last_24_hours"] + "\n"
|
98 |
+
|
99 |
+
basic_component_values[0] = md0
|
100 |
+
basic_component_values[1] = basic_stats["chat_dates_bar"]
|
101 |
+
basic_component_values[2] = md1
|
102 |
+
basic_component_values[3] = md2
|
103 |
+
basic_component_values[4] = md3
|
104 |
+
basic_component_values[5] = md4
|
105 |
+
|
106 |
+
|
107 |
+
def update_worker(max_num_files, interval, elo_results_file):
|
108 |
+
while True:
|
109 |
+
tic = time.time()
|
110 |
+
update_elo_components(max_num_files, elo_results_file)
|
111 |
+
durtaion = time.time() - tic
|
112 |
+
print(f"update duration: {durtaion:.2f} s")
|
113 |
+
time.sleep(max(interval - durtaion, 0))
|
114 |
+
|
115 |
+
|
116 |
+
def load_demo(url_params, request: gr.Request):
|
117 |
+
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
118 |
+
return basic_component_values + leader_component_values
|
119 |
+
|
120 |
+
|
121 |
+
def model_hyperlink(model_name, link):
|
122 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
123 |
+
|
124 |
+
|
125 |
+
def load_leaderboard_table_csv(filename, add_hyperlink=True):
|
126 |
+
lines = open(filename).readlines()
|
127 |
+
heads = [v.strip() for v in lines[0].split(",")]
|
128 |
+
rows = []
|
129 |
+
for i in range(1, len(lines)):
|
130 |
+
row = [v.strip() for v in lines[i].split(",")]
|
131 |
+
for j in range(len(heads)):
|
132 |
+
item = {}
|
133 |
+
for h, v in zip(heads, row):
|
134 |
+
if h == "Arena Elo rating":
|
135 |
+
if v != "-":
|
136 |
+
v = int(ast.literal_eval(v))
|
137 |
+
else:
|
138 |
+
v = np.nan
|
139 |
+
elif h == "MMLU":
|
140 |
+
if v != "-":
|
141 |
+
v = round(ast.literal_eval(v) * 100, 1)
|
142 |
+
else:
|
143 |
+
v = np.nan
|
144 |
+
elif h == "MT-bench (win rate %)":
|
145 |
+
if v != "-":
|
146 |
+
v = round(ast.literal_eval(v[:-1]), 1)
|
147 |
+
else:
|
148 |
+
v = np.nan
|
149 |
+
elif h == "MT-bench (score)":
|
150 |
+
if v != "-":
|
151 |
+
v = round(ast.literal_eval(v), 2)
|
152 |
+
else:
|
153 |
+
v = np.nan
|
154 |
+
item[h] = v
|
155 |
+
if add_hyperlink:
|
156 |
+
item["Model"] = model_hyperlink(item["Model"], item["Link"])
|
157 |
+
rows.append(item)
|
158 |
+
|
159 |
+
return rows
|
160 |
+
|
161 |
+
|
162 |
+
def build_basic_stats_tab():
|
163 |
+
empty = "Loading ..."
|
164 |
+
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
|
165 |
+
|
166 |
+
md0 = gr.Markdown(empty)
|
167 |
+
gr.Markdown("#### Figure 1: Number of model calls and votes")
|
168 |
+
plot_1 = gr.Plot(show_label=False)
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column():
|
171 |
+
md1 = gr.Markdown(empty)
|
172 |
+
with gr.Column():
|
173 |
+
md2 = gr.Markdown(empty)
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
md3 = gr.Markdown(empty)
|
177 |
+
with gr.Column():
|
178 |
+
md4 = gr.Markdown(empty)
|
179 |
+
return [md0, plot_1, md1, md2, md3, md4]
|
180 |
+
|
181 |
+
def get_full_table(arena_df, model_table_df):
|
182 |
+
values = []
|
183 |
+
for i in range(len(model_table_df)):
|
184 |
+
row = []
|
185 |
+
model_key = model_table_df.iloc[i]["key"]
|
186 |
+
model_name = model_table_df.iloc[i]["Model"]
|
187 |
+
# model display name
|
188 |
+
row.append(model_name)
|
189 |
+
if model_key in arena_df.index:
|
190 |
+
idx = arena_df.index.get_loc(model_key)
|
191 |
+
row.append(round(arena_df.iloc[idx]["rating"]))
|
192 |
+
else:
|
193 |
+
row.append(np.nan)
|
194 |
+
row.append(model_table_df.iloc[i]["MT-bench (score)"])
|
195 |
+
row.append(model_table_df.iloc[i]["MMLU"])
|
196 |
+
# Organization
|
197 |
+
row.append(model_table_df.iloc[i]["Organization"])
|
198 |
+
# license
|
199 |
+
row.append(model_table_df.iloc[i]["License"])
|
200 |
+
|
201 |
+
values.append(row)
|
202 |
+
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
|
203 |
+
return values
|
204 |
+
|
205 |
+
|
206 |
+
def get_arena_table(arena_df, model_table_df):
|
207 |
+
# sort by rating
|
208 |
+
arena_df = arena_df.sort_values(by=["rating"], ascending=False)
|
209 |
+
values = []
|
210 |
+
for i in range(len(arena_df)):
|
211 |
+
row = []
|
212 |
+
model_key = arena_df.index[i]
|
213 |
+
model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
|
214 |
+
0
|
215 |
+
]
|
216 |
+
|
217 |
+
# rank
|
218 |
+
row.append(i + 1)
|
219 |
+
# model display name
|
220 |
+
row.append(model_name)
|
221 |
+
# elo rating
|
222 |
+
row.append(round(arena_df.iloc[i]["rating"]))
|
223 |
+
upper_diff = round(
|
224 |
+
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
|
225 |
+
)
|
226 |
+
lower_diff = round(
|
227 |
+
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
|
228 |
+
)
|
229 |
+
row.append(f"+{upper_diff}/-{lower_diff}")
|
230 |
+
# num battles
|
231 |
+
row.append(round(arena_df.iloc[i]["num_battles"]))
|
232 |
+
# Organization
|
233 |
+
row.append(
|
234 |
+
model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
|
235 |
+
)
|
236 |
+
# license
|
237 |
+
row.append(
|
238 |
+
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
|
239 |
+
)
|
240 |
+
|
241 |
+
cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
|
242 |
+
if cutoff_date == "-":
|
243 |
+
row.append("Unknown")
|
244 |
+
else:
|
245 |
+
row.append(cutoff_date)
|
246 |
+
values.append(row)
|
247 |
+
return values
|
248 |
+
|
249 |
+
def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
|
250 |
+
if elo_results_file is None: # Do live update
|
251 |
+
default_md = "Loading ..."
|
252 |
+
p1 = p2 = p3 = p4 = None
|
253 |
+
else:
|
254 |
+
with open(elo_results_file, "rb") as fin:
|
255 |
+
elo_results = pickle.load(fin)
|
256 |
+
|
257 |
+
p1 = elo_results["win_fraction_heatmap"]
|
258 |
+
p2 = elo_results["battle_count_heatmap"]
|
259 |
+
p3 = elo_results["bootstrap_elo_rating"]
|
260 |
+
p4 = elo_results["average_win_rate_bar"]
|
261 |
+
arena_df = elo_results["leaderboard_table_df"]
|
262 |
+
default_md = make_default_md(arena_df, elo_results)
|
263 |
+
|
264 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
265 |
+
if leaderboard_table_file:
|
266 |
+
data = load_leaderboard_table_csv(leaderboard_table_file)
|
267 |
+
model_table_df = pd.DataFrame(data)
|
268 |
+
|
269 |
+
with gr.Tabs() as tabs:
|
270 |
+
# arena table
|
271 |
+
arena_table_vals = get_arena_table(arena_df, model_table_df)
|
272 |
+
with gr.Tab("Arena Elo", id=0):
|
273 |
+
md = make_arena_leaderboard_md(arena_df)
|
274 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
275 |
+
gr.Dataframe(
|
276 |
+
headers=[
|
277 |
+
"Rank",
|
278 |
+
"π€ Model",
|
279 |
+
"β Arena Elo",
|
280 |
+
"π 95% CI",
|
281 |
+
"π³οΈ Votes",
|
282 |
+
"Organization",
|
283 |
+
"License",
|
284 |
+
"Knowledge Cutoff",
|
285 |
+
],
|
286 |
+
datatype=[
|
287 |
+
"str",
|
288 |
+
"markdown",
|
289 |
+
"number",
|
290 |
+
"str",
|
291 |
+
"number",
|
292 |
+
"str",
|
293 |
+
"str",
|
294 |
+
"str",
|
295 |
+
],
|
296 |
+
value=arena_table_vals,
|
297 |
+
elem_id="arena_leaderboard_dataframe",
|
298 |
+
height=700,
|
299 |
+
column_widths=[50, 200, 120, 100, 100, 150, 150, 100],
|
300 |
+
wrap=True,
|
301 |
+
)
|
302 |
+
with gr.Tab("Full Leaderboard", id=1):
|
303 |
+
md = make_full_leaderboard_md(elo_results)
|
304 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
305 |
+
full_table_vals = get_full_table(arena_df, model_table_df)
|
306 |
+
gr.Dataframe(
|
307 |
+
headers=[
|
308 |
+
"π€ Model",
|
309 |
+
"β Arena Elo",
|
310 |
+
"π MT-bench",
|
311 |
+
"π MMLU",
|
312 |
+
"Organization",
|
313 |
+
"License",
|
314 |
+
],
|
315 |
+
datatype=["markdown", "number", "number", "number", "str", "str"],
|
316 |
+
value=full_table_vals,
|
317 |
+
elem_id="full_leaderboard_dataframe",
|
318 |
+
column_widths=[200, 100, 100, 100, 150, 150],
|
319 |
+
height=700,
|
320 |
+
wrap=True,
|
321 |
+
)
|
322 |
+
if not show_plot:
|
323 |
+
gr.Markdown(
|
324 |
+
""" ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
|
325 |
+
If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
|
326 |
+
""",
|
327 |
+
elem_id="leaderboard_markdown",
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
pass
|
331 |
+
|
332 |
+
leader_component_values[:] = [default_md, p1, p2, p3, p4]
|
333 |
+
|
334 |
+
if show_plot:
|
335 |
+
gr.Markdown(
|
336 |
+
f"""## More Statistics for Chatbot Arena\n
|
337 |
+
Below are figures for more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
|
338 |
+
You can find more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
|
339 |
+
""",
|
340 |
+
elem_id="leaderboard_markdown"
|
341 |
+
)
|
342 |
+
with gr.Row():
|
343 |
+
with gr.Column():
|
344 |
+
gr.Markdown(
|
345 |
+
"#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
|
346 |
+
)
|
347 |
+
plot_1 = gr.Plot(p1, show_label=False)
|
348 |
+
with gr.Column():
|
349 |
+
gr.Markdown(
|
350 |
+
"#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
|
351 |
+
)
|
352 |
+
plot_2 = gr.Plot(p2, show_label=False)
|
353 |
+
with gr.Row():
|
354 |
+
with gr.Column():
|
355 |
+
gr.Markdown(
|
356 |
+
"#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)"
|
357 |
+
)
|
358 |
+
plot_3 = gr.Plot(p3, show_label=False)
|
359 |
+
with gr.Column():
|
360 |
+
gr.Markdown(
|
361 |
+
"#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
|
362 |
+
)
|
363 |
+
plot_4 = gr.Plot(p4, show_label=False)
|
364 |
+
|
365 |
+
gr.Markdown(acknowledgment_md)
|
366 |
+
|
367 |
+
if show_plot:
|
368 |
+
return [md_1, plot_1, plot_2, plot_3, plot_4]
|
369 |
+
return [md_1]
|
370 |
+
|
371 |
+
block_css = """
|
372 |
+
#notice_markdown {
|
373 |
+
font-size: 104%
|
374 |
+
}
|
375 |
+
#notice_markdown th {
|
376 |
+
display: none;
|
377 |
+
}
|
378 |
+
#notice_markdown td {
|
379 |
+
padding-top: 6px;
|
380 |
+
padding-bottom: 6px;
|
381 |
+
}
|
382 |
+
#leaderboard_markdown {
|
383 |
+
font-size: 104%
|
384 |
+
}
|
385 |
+
#leaderboard_markdown td {
|
386 |
+
padding-top: 6px;
|
387 |
+
padding-bottom: 6px;
|
388 |
+
}
|
389 |
+
#leaderboard_dataframe td {
|
390 |
+
line-height: 0.1em;
|
391 |
+
}
|
392 |
+
footer {
|
393 |
+
display:none !important
|
394 |
+
}
|
395 |
+
.image-container {
|
396 |
+
display: flex;
|
397 |
+
align-items: center;
|
398 |
+
padding: 1px;
|
399 |
+
}
|
400 |
+
.image-container img {
|
401 |
+
margin: 0 30px;
|
402 |
+
height: 20px;
|
403 |
+
max-height: 100%;
|
404 |
+
width: auto;
|
405 |
+
max-width: 20%;
|
406 |
+
}
|
407 |
+
"""
|
408 |
+
|
409 |
+
acknowledgment_md = """
|
410 |
+
### Acknowledgment
|
411 |
+
<div class="image-container">
|
412 |
+
<p> We thank <a href="https://www.kaggle.com/" target="_blank">Kaggle</a>, <a href="https://mbzuai.ac.ae/" target="_blank">MBZUAI</a>, <a href="https://www.anyscale.com/" target="_blank">AnyScale</a>, <a href="https://www.a16z.com/" target="_blank">a16z</a>, and <a href="https://huggingface.co/" target="_blank">HuggingFace</a> for their generous <a href="https://lmsys.org/donations/" target="_blank">sponsorship</a>. </p>
|
413 |
+
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Kaggle">
|
414 |
+
<img src="https://mma.prnewswire.com/media/1227419/MBZUAI_Logo.jpg?p=facebookg" alt="MBZUAI">
|
415 |
+
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="AnyScale">
|
416 |
+
<img src="https://a16z.com/wp-content/themes/a16z/assets/images/opegraph_images/corporate-Yoast-Twitter.jpg" alt="a16z">
|
417 |
+
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" alt="HuggingFace">
|
418 |
+
</div>
|
419 |
+
"""
|
420 |
+
|
421 |
+
def build_demo(elo_results_file, leaderboard_table_file):
|
422 |
+
text_size = gr.themes.sizes.text_lg
|
423 |
+
|
424 |
+
with gr.Blocks(
|
425 |
+
title="Chatbot Arena Leaderboard",
|
426 |
+
theme=gr.themes.Base(text_size=text_size),
|
427 |
+
css=block_css,
|
428 |
+
) as demo:
|
429 |
+
leader_components = build_leaderboard_tab(
|
430 |
+
elo_results_file, leaderboard_table_file, show_plot=True
|
431 |
+
)
|
432 |
+
return demo
|
433 |
+
|
434 |
+
|
435 |
+
if __name__ == "__main__":
|
436 |
+
parser = argparse.ArgumentParser()
|
437 |
+
parser.add_argument("--share", action="store_true")
|
438 |
+
args = parser.parse_args()
|
439 |
+
|
440 |
+
elo_result_files = glob.glob("elo_results_*.pkl")
|
441 |
+
elo_result_files.sort(key=lambda x: int(x[12:-4]))
|
442 |
+
elo_result_file = elo_result_files[-1]
|
443 |
+
|
444 |
+
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
|
445 |
+
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
|
446 |
+
leaderboard_table_file = leaderboard_table_files[-1]
|
447 |
+
|
448 |
+
demo = build_demo(elo_result_file, leaderboard_table_file)
|
449 |
+
demo.launch(share=args.share)
|
index.html
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
<!DOCTYPE html>
|
2 |
-
<html>
|
3 |
-
<head>
|
4 |
-
<meta charset="utf-8">
|
5 |
-
<meta name="viewport" content="width=device-width, initial-scale=1">
|
6 |
-
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
|
7 |
-
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">
|
8 |
-
|
9 |
-
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
|
10 |
-
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
|
11 |
-
|
12 |
-
<style>
|
13 |
-
html, body {
|
14 |
-
margin: 0;
|
15 |
-
padding: 0;
|
16 |
-
height: 100%;
|
17 |
-
}
|
18 |
-
</style>
|
19 |
-
</head>
|
20 |
-
<body>
|
21 |
-
<gradio-lite>
|
22 |
-
<gradio-file name="app.py" entrypoint>
|
23 |
-
import gradio as gr
|
24 |
-
|
25 |
-
from filters import as_gray
|
26 |
-
|
27 |
-
def process(input_image):
|
28 |
-
output_image = as_gray(input_image)
|
29 |
-
return output_image
|
30 |
-
|
31 |
-
demo = gr.Interface(
|
32 |
-
process,
|
33 |
-
"image",
|
34 |
-
"image",
|
35 |
-
examples=["lion.jpg", "logo.png"],
|
36 |
-
)
|
37 |
-
|
38 |
-
demo.launch()
|
39 |
-
</gradio-file>
|
40 |
-
|
41 |
-
<gradio-file name="filters.py">
|
42 |
-
from skimage.color import rgb2gray
|
43 |
-
|
44 |
-
def as_gray(image):
|
45 |
-
return rgb2gray(image)
|
46 |
-
</gradio-file>
|
47 |
-
|
48 |
-
<gradio-file name="lion.jpg" url="https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/lion.jpg" />
|
49 |
-
<gradio-file name="logo.png" url="https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png" />
|
50 |
-
|
51 |
-
<gradio-requirements>
|
52 |
-
# Same syntax as requirements.txt
|
53 |
-
scikit-image
|
54 |
-
</gradio-requirements>
|
55 |
-
</gradio-lite>
|
56 |
-
</body>
|
57 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
plotly
|