babilong / app.py
booydar
update date
2eb8cb0
raw
history blame
6.49 kB
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
# import ast
# import argparse
# import glob
# import pickle
import gradio as gr
import numpy as np
import pandas as pd
import os
from collections import defaultdict
from matplotlib.colors import LinearSegmentedColormap
def make_default_md():
leaderboard_md = f"""
# πŸ”ŽπŸ“šπŸͺ‘πŸ“šβ“ BABILong Leaderboard πŸ†
[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg.svg)](https://huggingface.co/datasets/booydar/babilong)
| [GitHub](https://github.com/booydar/recurrent-memory-transformer/) | [Paper](https://arxiv.org/abs/2406.10149) | [Dataset](https://github.com/booydar/babilong/) |
"""
return leaderboard_md
def make_arena_leaderboard_md(total_models):
leaderboard_md = f"""Total #models: **{total_models}**. Last updated: July 29, 2024."""
return leaderboard_md
def make_model_desc_md(f_len):
desc_md = make_arena_leaderboard_md(f_len)
models = next(os.walk('info'))[2]
for model in models:
model_name = model.split('.md')[0]
with open(os.path.join('info', model), 'r') as f:
description = f.read()
desc_md += f"\n\n### {model_name}\n{description}"
return desc_md
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_model(folders, tab_name, msg_lengths):
results = defaultdict(list)
class NA():
def __repr__(self) -> str:
return '-'
def __float__(self):
return 0.0
mean_score = []
for i, folder in enumerate(folders):
model_name = folder.split('/')[-1]
if 'fine-tune' in model_name:
model_name += ' πŸ› οΈ'
if 'rag' in model_name.lower() or 'retrieve' in model_name.lower():
model_name += ' πŸ”Ž'
results['Model'].append(model_name)
for task in msg_lengths:
if not os.path.isfile(f'{folder}/{tab_name}/{task}.csv'):
results[msg_lengths[task]].append(NA())
else:
df = pd.read_csv(f'{folder}/{tab_name}/{task}.csv')
results[msg_lengths[task]].append(int(df['result'].sum() / len(df) * 100))
mean_score.append(-np.mean([float(results[msg_lengths[task]][i]) for task in list(msg_lengths.keys())[:10]]))
res_df = pd.DataFrame(results)
lengths = list(msg_lengths.values())
res_df['mean_score'] = mean_score
res_df['num_lengths'] = -(res_df[lengths].astype(float) > 0).sum(axis=1)
res_df = res_df[res_df.num_lengths != 0]
res_df.sort_values(['num_lengths', 'mean_score'], inplace=True)
res_df['Rank'] = range(1, res_df.shape[0] + 1)
res_df['Avg ≀32k'] = res_df[lengths[:5]].astype(float).fillna(0).mean(axis=1).astype(int)
res_df['Avg ≀128k'] = res_df[lengths[:7]].astype(float).fillna(0).mean(axis=1).astype(int)
ordered_columns = ['Rank', 'Model', 'Avg ≀32k', 'Avg ≀128k'] + lengths
res_df = res_df[ordered_columns]
return res_df
def build_leaderboard_tab(folders):
default_md = make_default_md()
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
msg_lengths = {
'0': '0k',
'4000': '4k',
'8000': '8k',
'16000': '16k',
'32000': '32k',
'64000': '64k',
'128000': '128k',
'500000': '500k',
'1000000': '1M',
'10000000': '10M'
}
with gr.Tabs() as tabs:
for tab_id, tab_name in enumerate(['avg', 'qa1','qa2', 'qa3', 'qa4', 'qa5']):
df = load_model(folders, tab_name, msg_lengths)
cmap = LinearSegmentedColormap.from_list('ryg', ["red", "yellow", "green"], N=256)
# df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=list(msg_lengths.values()))
df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=df.columns[2:])
# arena table
with gr.Tab(tab_name, id=tab_id):
md = make_arena_leaderboard_md(len(folders))
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"Rank",
"Model",
] + list(msg_lengths.values()) + ['Avg ≀32k', 'Avg ≀128k'],
datatype=[
"str",
"markdown",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
],
value=df,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[20, 150] + [30] * 2 + [20] * len(msg_lengths),
wrap=True,
)
with gr.Tab("Description", id=tab_id + 1):
desc_md = make_model_desc_md(len(folders))
gr.Markdown(desc_md, elem_id="leaderboard_markdown")
return [md_1]
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
def build_demo(folders):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="Babilong leaderboard",
theme=gr.themes.Base(text_size=text_size),
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(folders)
return demo
if __name__ == "__main__":
folders = [f'results/{folders}' for folders in os.listdir('results')]
demo = build_demo(folders)
demo.launch(share=False)