Upload 5 files
Browse files- app.py +102 -0
- model/ModelFinal_random_forest_rainfall_.pkl +3 -0
- requirements.txt +7 -0
- src/model.py +8 -0
- src/prediction.py +82 -0
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import io
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from src.prediction import predict_range
|
| 9 |
+
|
| 10 |
+
def gradio_predict(start_month: str, end_month: str):
|
| 11 |
+
try:
|
| 12 |
+
df_pred = predict_range(start_month, end_month)
|
| 13 |
+
df_pred['input_month'] = pd.to_datetime(df_pred['input_month'])
|
| 14 |
+
|
| 15 |
+
# Label bulan dalam Bahasa Indonesia
|
| 16 |
+
bulan_indonesia = [
|
| 17 |
+
'Januari', 'Februari', 'Maret', 'April', 'Mei', 'Juni',
|
| 18 |
+
'Juli', 'Agustus', 'September', 'Oktober', 'November', 'Desember'
|
| 19 |
+
]
|
| 20 |
+
df_pred['bulan_label'] = df_pred['input_month'].dt.month.apply(lambda x: bulan_indonesia[x-1]) + \
|
| 21 |
+
' ' + df_pred['input_month'].dt.year.astype(str)
|
| 22 |
+
|
| 23 |
+
# Setup visualisasi
|
| 24 |
+
plt.figure(figsize=(15, 8))
|
| 25 |
+
sns.set_style("whitegrid")
|
| 26 |
+
|
| 27 |
+
# Warna berdasarkan nilai
|
| 28 |
+
cmap = plt.cm.Blues
|
| 29 |
+
norm = plt.Normalize(df_pred['prediksi_rr'].min(), df_pred['prediksi_rr'].max())
|
| 30 |
+
colors = cmap(norm(df_pred['prediksi_rr'].values))
|
| 31 |
+
|
| 32 |
+
# Garis utama
|
| 33 |
+
sns.lineplot(data=df_pred, x='bulan_label', y='prediksi_rr', color='darkcyan', linewidth=2, marker='o')
|
| 34 |
+
|
| 35 |
+
# Titik-titik & label nilai
|
| 36 |
+
for i, row in df_pred.iterrows():
|
| 37 |
+
plt.scatter(row['bulan_label'], row['prediksi_rr'], color=colors[i], s=120, edgecolor='black', zorder=5)
|
| 38 |
+
plt.text(
|
| 39 |
+
row['bulan_label'], row['prediksi_rr'] + 4,
|
| 40 |
+
f"{row['prediksi_rr']:.1f} mm", ha='center', va='bottom',
|
| 41 |
+
fontsize=9, color='black', bbox=dict(boxstyle="round,pad=0.2", fc="white", ec="gray", alpha=0.7)
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Titik ekstrem (max dan min)
|
| 45 |
+
max_idx = df_pred['prediksi_rr'].idxmax()
|
| 46 |
+
min_idx = df_pred['prediksi_rr'].idxmin()
|
| 47 |
+
plt.scatter(df_pred.loc[max_idx, 'bulan_label'], df_pred.loc[max_idx, 'prediksi_rr'],
|
| 48 |
+
color='red', s=150, label='Tertinggi', zorder=6)
|
| 49 |
+
plt.scatter(df_pred.loc[min_idx, 'bulan_label'], df_pred.loc[min_idx, 'prediksi_rr'],
|
| 50 |
+
color='blue', s=150, label='Terendah', zorder=6)
|
| 51 |
+
|
| 52 |
+
# Garis rata-rata
|
| 53 |
+
mean_val = df_pred['prediksi_rr'].mean()
|
| 54 |
+
plt.axhline(mean_val, color='orange', linestyle='--', linewidth=1.2, label=f'Rata-rata: {mean_val:.1f} mm')
|
| 55 |
+
plt.text(
|
| 56 |
+
x=len(df_pred) - 3, y=mean_val + 6,
|
| 57 |
+
s=f'{mean_val:.1f} mm', color='orange', fontsize=10, style='italic'
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Pengaturan plot
|
| 61 |
+
plt.title('Prediksi Curah Hujan Bulanan\nWilayah: Kota Bandung', fontsize=18, weight='bold')
|
| 62 |
+
plt.xlabel('Bulan', fontsize=12)
|
| 63 |
+
plt.ylabel('Curah Hujan (mm)', fontsize=12)
|
| 64 |
+
plt.xticks(rotation=45)
|
| 65 |
+
plt.legend()
|
| 66 |
+
plt.grid(True, linestyle='--', alpha=0.5)
|
| 67 |
+
plt.tight_layout()
|
| 68 |
+
|
| 69 |
+
# Simpan plot ke buffer
|
| 70 |
+
buf = io.BytesIO()
|
| 71 |
+
plt.savefig(buf, format='png', dpi=300)
|
| 72 |
+
plt.close()
|
| 73 |
+
buf.seek(0)
|
| 74 |
+
img = Image.open(buf)
|
| 75 |
+
|
| 76 |
+
# Format hasil tabel
|
| 77 |
+
df_pred['input_month'] = df_pred['input_month'].dt.strftime('%Y-%m')
|
| 78 |
+
result_str = df_pred[['input_month', 'prediksi_rr']].rename(
|
| 79 |
+
columns={'input_month': 'Bulan', 'prediksi_rr': 'Prediksi RR (mm)'}
|
| 80 |
+
).to_string(index=False)
|
| 81 |
+
|
| 82 |
+
return result_str, img
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"Terjadi kesalahan: {str(e)}", None
|
| 86 |
+
|
| 87 |
+
# Gradio interface
|
| 88 |
+
interface = gr.Interface(
|
| 89 |
+
fn=gradio_predict,
|
| 90 |
+
inputs=[
|
| 91 |
+
gr.Textbox(label="Bulan Awal (format: YYYY-MM)", placeholder="contoh: 2023-01"),
|
| 92 |
+
gr.Textbox(label="Bulan Akhir (format: YYYY-MM)", placeholder="contoh: 2023-12")
|
| 93 |
+
],
|
| 94 |
+
outputs=[
|
| 95 |
+
gr.Textbox(label="Tabel Hasil Prediksi"),
|
| 96 |
+
gr.Image(label="Visualisasi Curah Hujan")
|
| 97 |
+
],
|
| 98 |
+
title="Prediksi Curah Hujan Bulanan",
|
| 99 |
+
description="Masukkan rentang bulan untuk memprediksi curah hujan di Bandung menggunakan model Random Forest."
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
interface.launch(debug=True)
|
model/ModelFinal_random_forest_rainfall_.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d16fe864cfb4187597cfcfb153696db1c40b9eef42785af0d4e8b49cb4758f8
|
| 3 |
+
size 3723425
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
matplotlib
|
| 3 |
+
pandas
|
| 4 |
+
seaborn
|
| 5 |
+
scikit-learn
|
| 6 |
+
joblib
|
| 7 |
+
python-dateutil
|
src/model.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/model.py
|
| 2 |
+
import joblib
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# Fungsi untuk memuat model
|
| 6 |
+
def load_model():
|
| 7 |
+
model_path = os.path.join(os.path.dirname(__file__), '..', 'model', 'ModelFinal_random_forest_rainfall_.pkl')
|
| 8 |
+
return joblib.load(model_path)
|
src/prediction.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/prediction.py
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from dateutil.relativedelta import relativedelta
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from src.model import load_model
|
| 6 |
+
|
| 7 |
+
# Load model sekali di awal
|
| 8 |
+
model = load_model()
|
| 9 |
+
|
| 10 |
+
# PREDIKSI 1 BULAN
|
| 11 |
+
def prediksi_curah_hujan(bulan_input: str):
|
| 12 |
+
"""
|
| 13 |
+
Fungsi untuk memprediksi curah hujan berdasarkan bulan input.
|
| 14 |
+
Tidak ada preprocessing, asumsikan data sudah siap.
|
| 15 |
+
"""
|
| 16 |
+
# Langsung pakai fitur yang diinginkan
|
| 17 |
+
features = [
|
| 18 |
+
'month_cos',
|
| 19 |
+
'RR_lag12',
|
| 20 |
+
'season_dry',
|
| 21 |
+
'season_rainy',
|
| 22 |
+
'RR_above_monthly_median',
|
| 23 |
+
'RR_monthly_median_loo',
|
| 24 |
+
'RR_monthly_std_loo',
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
# Anggap df_row sudah berisi data yang siap dipakai untuk prediksi
|
| 28 |
+
X = df_row[features]
|
| 29 |
+
prediksi = model.predict(X)
|
| 30 |
+
return prediksi[0]
|
| 31 |
+
|
| 32 |
+
# PREDIKSI BANYAK BULAN
|
| 33 |
+
def predict_range(start: str, end: str) -> pd.DataFrame:
|
| 34 |
+
"""
|
| 35 |
+
Fungsi untuk melakukan prediksi curah hujan dalam rentang bulan.
|
| 36 |
+
Tanpa preprocessing, data langsung digunakan.
|
| 37 |
+
"""
|
| 38 |
+
start_date = datetime.strptime(start, "%Y-%m")
|
| 39 |
+
end_date = datetime.strptime(end, "%Y-%m")
|
| 40 |
+
if start_date > end_date:
|
| 41 |
+
raise ValueError("Bulan awal tidak boleh lebih besar dari bulan akhir")
|
| 42 |
+
|
| 43 |
+
dates = []
|
| 44 |
+
current = start_date
|
| 45 |
+
while current <= end_date:
|
| 46 |
+
dates.append(current.strftime("%Y-%m"))
|
| 47 |
+
current += relativedelta(months=1)
|
| 48 |
+
|
| 49 |
+
# Di sini kita anggap data sudah siap tanpa perlu preprocessing
|
| 50 |
+
# Siapkan data secara langsung
|
| 51 |
+
processed_rows = []
|
| 52 |
+
for bulan_input in dates:
|
| 53 |
+
try:
|
| 54 |
+
row = prepare_data(bulan_input) # Anggap kita sudah punya data yang siap dipakai
|
| 55 |
+
processed_rows.append(row)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"[SKIP] {bulan_input} gagal diproses: {e}")
|
| 58 |
+
|
| 59 |
+
if not processed_rows:
|
| 60 |
+
raise ValueError("Tidak ada bulan yang berhasil diproses.")
|
| 61 |
+
|
| 62 |
+
df_all = pd.concat(processed_rows, ignore_index=True)
|
| 63 |
+
|
| 64 |
+
features = [
|
| 65 |
+
'month_cos',
|
| 66 |
+
'RR_lag12',
|
| 67 |
+
'season_dry',
|
| 68 |
+
'season_rainy',
|
| 69 |
+
'RR_above_monthly_median',
|
| 70 |
+
'RR_monthly_median_loo',
|
| 71 |
+
'RR_monthly_std_loo',
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
X = df_all[features]
|
| 75 |
+
y_pred = model.predict(X)
|
| 76 |
+
|
| 77 |
+
df_result = pd.DataFrame({
|
| 78 |
+
'input_month': df_all['YearMonth'].dt.strftime('%Y-%m'),
|
| 79 |
+
'prediksi_rr': y_pred
|
| 80 |
+
})
|
| 81 |
+
|
| 82 |
+
return df_result
|