Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- WK2_Airbnb_Amsterdam_listings_proj_solution.csv +0 -0
- app.py +98 -0
- requirements.txt +2 -0
WK2_Airbnb_Amsterdam_listings_proj_solution.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from pandas.api.types import (
|
4 |
+
is_categorical_dtype,
|
5 |
+
is_datetime64_any_dtype,
|
6 |
+
is_numeric_dtype,
|
7 |
+
is_object_dtype
|
8 |
+
)
|
9 |
+
|
10 |
+
st.title("Filter your Airbnb Listings dataframe!")
|
11 |
+
|
12 |
+
st.write(
|
13 |
+
"""This app is based on this blog [here]
|
14 |
+
(https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/).
|
15 |
+
Can you think of ways to extend it with visuals?
|
16 |
+
"""
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
21 |
+
"""
|
22 |
+
Adds a UI on top of a dataframe to let viewers filter columns
|
23 |
+
Args:
|
24 |
+
df (pd.DataFrame): Original dataframe
|
25 |
+
Returns:
|
26 |
+
pd.DataFrame: Filtered dataframe
|
27 |
+
"""
|
28 |
+
modify = st.checkbox("Add filters")
|
29 |
+
|
30 |
+
if not modify:
|
31 |
+
return df
|
32 |
+
|
33 |
+
df = df.copy()
|
34 |
+
|
35 |
+
# Try to convert datetimes into a standard format (datetime, no timezone)
|
36 |
+
for col in df.columns:
|
37 |
+
if is_object_dtype(df[col]):
|
38 |
+
try:
|
39 |
+
df[col] = pd.to_datetime(df[col])
|
40 |
+
except Exception:
|
41 |
+
pass
|
42 |
+
|
43 |
+
if is_datetime64_any_dtype(df[col]):
|
44 |
+
df[col] = df[col].dt.tz_localize(None)
|
45 |
+
|
46 |
+
modification_container = st.container()
|
47 |
+
|
48 |
+
with modification_container:
|
49 |
+
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
|
50 |
+
for column in to_filter_columns:
|
51 |
+
left, right = st.columns((1, 20))
|
52 |
+
left.write("↳")
|
53 |
+
# Treat columns with < 10 unique values as categorical
|
54 |
+
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
|
55 |
+
user_cat_input = right.multiselect(
|
56 |
+
f"Values for {column}",
|
57 |
+
df[column].unique(),
|
58 |
+
default=list(df[column].unique()),
|
59 |
+
)
|
60 |
+
df = df[df[column].isin(user_cat_input)]
|
61 |
+
elif is_numeric_dtype(df[column]):
|
62 |
+
_min = float(df[column].min())
|
63 |
+
_max = float(df[column].max())
|
64 |
+
step = (_max - _min) / 100
|
65 |
+
user_num_input = right.slider(
|
66 |
+
f"Values for {column}",
|
67 |
+
_min,
|
68 |
+
_max,
|
69 |
+
(_min, _max),
|
70 |
+
step=step,
|
71 |
+
)
|
72 |
+
df = df[df[column].between(*user_num_input)]
|
73 |
+
elif is_datetime64_any_dtype(df[column]):
|
74 |
+
user_date_input = right.date_input(
|
75 |
+
f"Values for {column}",
|
76 |
+
value=(
|
77 |
+
df[column].min(),
|
78 |
+
df[column].max(),
|
79 |
+
),
|
80 |
+
)
|
81 |
+
if len(user_date_input) == 2:
|
82 |
+
user_date_input = tuple(map(pd.to_datetime, user_date_input))
|
83 |
+
start_date, end_date = user_date_input
|
84 |
+
df = df.loc[df[column].between(start_date, end_date)]
|
85 |
+
else:
|
86 |
+
user_text_input = right.text_input(
|
87 |
+
f"Substring or regex in {column}",
|
88 |
+
)
|
89 |
+
if user_text_input:
|
90 |
+
df = df[df[column].str.contains(user_text_input)]
|
91 |
+
|
92 |
+
return df
|
93 |
+
|
94 |
+
|
95 |
+
df = pd.read_csv(
|
96 |
+
"WK2_Airbnb_Amsterdam_listings_proj_solution.csv"
|
97 |
+
)
|
98 |
+
st.dataframe(filter_dataframe(df))
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|