Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +20 -0
- requirements.txt +4 -0
- src/streamlit_app.py +169 -0
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.13.5-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
build-essential \
|
| 7 |
+
curl \
|
| 8 |
+
git \
|
| 9 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
COPY requirements.txt ./
|
| 12 |
+
COPY src/ ./src/
|
| 13 |
+
|
| 14 |
+
RUN pip3 install -r requirements.txt
|
| 15 |
+
|
| 16 |
+
EXPOSE 8501
|
| 17 |
+
|
| 18 |
+
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 19 |
+
|
| 20 |
+
ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
requests
|
| 3 |
+
pandas
|
| 4 |
+
numpy
|
src/streamlit_app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import datetime as dt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import requests
|
| 6 |
+
import streamlit as st
|
| 7 |
+
|
| 8 |
+
# --- CONFIG ---
|
| 9 |
+
API_URL = os.getenv("API_URL", "https://rjuro-hotel-cancel-api.hf.space/predict_batch")
|
| 10 |
+
|
| 11 |
+
NUMERIC_FEATURES = [
|
| 12 |
+
'lead_time','arrival_date_week_number','arrival_date_day_of_month',
|
| 13 |
+
'stays_in_weekend_nights','stays_in_week_nights','adults','children',
|
| 14 |
+
'babies','is_repeated_guest','previous_cancellations',
|
| 15 |
+
'previous_bookings_not_canceled','booking_changes','agent',
|
| 16 |
+
'days_in_waiting_list','adr','required_car_parking_spaces',
|
| 17 |
+
'total_of_special_requests','total_guests','total_nights','is_summer',
|
| 18 |
+
'previous_cancellation_rate'
|
| 19 |
+
]
|
| 20 |
+
CATEGORICAL_FEATURES = [
|
| 21 |
+
'hotel','meal','market_segment','distribution_channel',
|
| 22 |
+
'reserved_room_type','deposit_type','customer_type'
|
| 23 |
+
]
|
| 24 |
+
ALL_FEATURES = NUMERIC_FEATURES + CATEGORICAL_FEATURES
|
| 25 |
+
|
| 26 |
+
st.set_page_config(page_title="Weekly Cancellation Predictions", layout="wide")
|
| 27 |
+
|
| 28 |
+
# --- SIMPLE SYNTH GENERATOR ---
|
| 29 |
+
def synth_week(n_per_day=300, seed=42):
|
| 30 |
+
rng = np.random.default_rng(seed)
|
| 31 |
+
today = dt.date.today()
|
| 32 |
+
all_rows = []
|
| 33 |
+
for i in range(1, 8):
|
| 34 |
+
arr = today + dt.timedelta(days=i)
|
| 35 |
+
week = int(arr.isocalendar().week)
|
| 36 |
+
dom = arr.day
|
| 37 |
+
is_summer = int(arr.month in [6,7,8])
|
| 38 |
+
|
| 39 |
+
n = n_per_day
|
| 40 |
+
lead_time = np.clip(rng.gamma(2.0, 60.0, n).astype(int), 1, 365)
|
| 41 |
+
wkd = rng.poisson(1.0, n)
|
| 42 |
+
wk = rng.poisson(3.0, n)
|
| 43 |
+
adults = np.maximum(1, rng.poisson(1.5, n)+1)
|
| 44 |
+
children = rng.binomial(2, 0.15, n)
|
| 45 |
+
babies = rng.binomial(1, 0.05, n)
|
| 46 |
+
is_repeated_guest = rng.binomial(1, 0.12, n)
|
| 47 |
+
prev_canc = rng.binomial(2, 0.05, n)
|
| 48 |
+
prev_notc = rng.binomial(3, 0.15, n)
|
| 49 |
+
booking_changes = rng.poisson(0.2, n)
|
| 50 |
+
agent = rng.integers(0, 5, n) # 0≈direct
|
| 51 |
+
wait_list = rng.binomial(5, 0.05, n)
|
| 52 |
+
adr = np.clip(rng.normal(120, 35, n), 30, 450)
|
| 53 |
+
parking = rng.binomial(1, 0.12, n)
|
| 54 |
+
special_req = rng.poisson(0.6, n)
|
| 55 |
+
total_nights = (wkd + wk).astype(int)
|
| 56 |
+
total_guests = (adults + children + babies).astype(int)
|
| 57 |
+
prev_rate = prev_canc / np.maximum(1e-6, (prev_canc + prev_notc + 1e-6))
|
| 58 |
+
|
| 59 |
+
def choice(vals, probs):
|
| 60 |
+
p = np.array(probs, dtype=float); p = p / p.sum()
|
| 61 |
+
return rng.choice(vals, p=p, size=n)
|
| 62 |
+
|
| 63 |
+
hotel = choice(['City Hotel','Resort Hotel'], [0.7, 0.3])
|
| 64 |
+
meal = choice(['BB','HB','FB','SC'], [0.75,0.15,0.03,0.07])
|
| 65 |
+
market = choice(['Online TA','Direct','Corporate','Offline TA/TO'], [0.45,0.30,0.15,0.10])
|
| 66 |
+
channel = choice(['TA/TO','Direct','Corporate','GDS'], [0.5,0.3,0.15,0.05])
|
| 67 |
+
roomtype = choice(list("ABCDEFG"), [0.35,0.25,0.15,0.1,0.08,0.05,0.02])
|
| 68 |
+
deposit = choice(['No Deposit','Non Refund','Refundable'], [0.75,0.15,0.10])
|
| 69 |
+
cust = choice(['Transient','Contract','Group','Transient-Party'], [0.7,0.15,0.08,0.07])
|
| 70 |
+
|
| 71 |
+
df = pd.DataFrame({
|
| 72 |
+
'lead_time': lead_time,
|
| 73 |
+
'arrival_date_week_number': week,
|
| 74 |
+
'arrival_date_day_of_month': dom,
|
| 75 |
+
'stays_in_weekend_nights': wkd,
|
| 76 |
+
'stays_in_week_nights': wk,
|
| 77 |
+
'adults': adults,
|
| 78 |
+
'children': children,
|
| 79 |
+
'babies': babies,
|
| 80 |
+
'is_repeated_guest': is_repeated_guest,
|
| 81 |
+
'previous_cancellations': prev_canc,
|
| 82 |
+
'previous_bookings_not_canceled': prev_notc,
|
| 83 |
+
'booking_changes': booking_changes,
|
| 84 |
+
'agent': agent,
|
| 85 |
+
'days_in_waiting_list': wait_list,
|
| 86 |
+
'adr': adr,
|
| 87 |
+
'required_car_parking_spaces': parking,
|
| 88 |
+
'total_of_special_requests': special_req,
|
| 89 |
+
'total_guests': total_guests,
|
| 90 |
+
'total_nights': total_nights,
|
| 91 |
+
'is_summer': is_summer,
|
| 92 |
+
'previous_cancellation_rate': prev_rate,
|
| 93 |
+
'hotel': hotel,
|
| 94 |
+
'meal': meal,
|
| 95 |
+
'market_segment': market,
|
| 96 |
+
'distribution_channel': channel,
|
| 97 |
+
'reserved_room_type': roomtype,
|
| 98 |
+
'deposit_type': deposit,
|
| 99 |
+
'customer_type': cust
|
| 100 |
+
})
|
| 101 |
+
df.insert(0, "arrival_date", pd.Timestamp(arr))
|
| 102 |
+
all_rows.append(df)
|
| 103 |
+
return pd.concat(all_rows, ignore_index=True)
|
| 104 |
+
|
| 105 |
+
def call_api(df: pd.DataFrame) -> np.ndarray:
|
| 106 |
+
payload = {"data": df[ALL_FEATURES].to_dict(orient="records")}
|
| 107 |
+
r = requests.post(API_URL, json=payload, timeout=60)
|
| 108 |
+
r.raise_for_status()
|
| 109 |
+
return np.array(r.json()["probabilities"])
|
| 110 |
+
|
| 111 |
+
# --- UI ---
|
| 112 |
+
st.title("Weekly Booking Predictions")
|
| 113 |
+
st.caption("API: " + API_URL)
|
| 114 |
+
|
| 115 |
+
with st.sidebar:
|
| 116 |
+
st.header("Simulation")
|
| 117 |
+
n_per_day = st.slider("Synthetic bookings per day", 50, 2000, 400, 50)
|
| 118 |
+
t_low = st.slider("Reminder threshold", 0.05, 0.60, 0.30, 0.01)
|
| 119 |
+
t_high = st.slider("Perk (prepay upgrade) threshold", 0.30, 0.95, 0.65, 0.01)
|
| 120 |
+
seed = st.number_input("Random seed", 0, 99999, 42, 1)
|
| 121 |
+
st.caption("Rules: p ≥ t_high → Perk; t_low ≤ p < t_high → Reminder; else → None.")
|
| 122 |
+
|
| 123 |
+
cols = st.columns(2)
|
| 124 |
+
with cols[0]:
|
| 125 |
+
if st.button("Generate & Predict", use_container_width=True):
|
| 126 |
+
df = synth_week(n_per_day=n_per_day, seed=int(seed))
|
| 127 |
+
probs = call_api(df)
|
| 128 |
+
df['pred_cancel_prob'] = probs
|
| 129 |
+
df['action'] = np.where(
|
| 130 |
+
probs >= t_high, "Perk-Upgrade (Prepay)",
|
| 131 |
+
np.where(probs >= t_low, "Reminder", "None")
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
daily = (
|
| 135 |
+
df.groupby(df['arrival_date'].dt.date)
|
| 136 |
+
.agg(n_bookings=('arrival_date','count'),
|
| 137 |
+
mean_risk=('pred_cancel_prob','mean'),
|
| 138 |
+
p75=('pred_cancel_prob', lambda x: np.quantile(x, 0.75)),
|
| 139 |
+
n_perk=('action', lambda s: (s=="Perk-Upgrade (Prepay)").sum()),
|
| 140 |
+
n_reminder=('action', lambda s: (s=="Reminder").sum()),
|
| 141 |
+
n_none=('action', lambda s: (s=="None").sum()))
|
| 142 |
+
.reset_index()
|
| 143 |
+
.rename(columns={'arrival_date':'date'})
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
st.subheader("Daily Summary (Next 7 Days)")
|
| 147 |
+
st.dataframe(daily, use_container_width=True, hide_index=True)
|
| 148 |
+
|
| 149 |
+
st.subheader("Preview: First 200 Bookings with Suggested Actions")
|
| 150 |
+
st.dataframe(
|
| 151 |
+
df[['arrival_date','hotel','market_segment','deposit_type','lead_time',
|
| 152 |
+
'total_nights','total_guests','pred_cancel_prob','action']].head(200),
|
| 153 |
+
use_container_width=True, hide_index=True
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
st.download_button(
|
| 157 |
+
"Download Full Weekly Predictions (CSV)",
|
| 158 |
+
df.to_csv(index=False).encode("utf-8"),
|
| 159 |
+
file_name="weekly_predictions_with_actions.csv",
|
| 160 |
+
mime="text/csv"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
with cols[1]:
|
| 164 |
+
st.subheader("How it works")
|
| 165 |
+
st.markdown(
|
| 166 |
+
"- Synthetic bookings for the next 7 days\n"
|
| 167 |
+
"- Calls the public FastAPI to get cancellation probabilities\n"
|
| 168 |
+
"- Simple rules pick suggested actions"
|
| 169 |
+
)
|