Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,10 @@
|
|
| 1 |
-
import os
|
| 2 |
import torch
|
| 3 |
import torchvision.transforms as transforms
|
| 4 |
-
import torchvision
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from PIL import Image
|
| 8 |
import gradio as gr
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
# === Paths ===
|
| 12 |
-
ART_DIR = "artifacts"
|
| 13 |
-
DCLR_MODEL_PATH = os.path.join(ART_DIR, "dclr_simple_cnn.pth")
|
| 14 |
-
DCLR_PERF_PNG = os.path.join(ART_DIR, "dclr_training_performance.png")
|
| 15 |
-
DCLR_ACC_PNG = os.path.join(ART_DIR, "dclr_final_test_accuracy.png")
|
| 16 |
-
DCLR_ACC_TXT = os.path.join(ART_DIR, "dclr_final_test_accuracy.txt")
|
| 17 |
-
BENCHMARK_TXT = os.path.join(ART_DIR, "benchmark_results.txt")
|
| 18 |
|
| 19 |
# === Simple CNN Model Definition ===
|
| 20 |
class SimpleCNN(nn.Module):
|
|
@@ -33,33 +23,28 @@ class SimpleCNN(nn.Module):
|
|
| 33 |
x = F.relu(self.fc1(x))
|
| 34 |
return self.fc2(x)
|
| 35 |
|
| 36 |
-
# ===
|
| 37 |
model = SimpleCNN()
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
model.eval()
|
| 41 |
-
print(f"Model loaded successfully from {
|
| 42 |
else:
|
| 43 |
-
print(f"Warning: Model file '{
|
| 44 |
|
| 45 |
# === CIFAR-10 Class Labels ===
|
| 46 |
class_labels = ['plane','car','bird','cat','deer','dog','frog','horse','ship','truck']
|
| 47 |
|
| 48 |
-
# === Image Preprocessing
|
| 49 |
preprocess = transforms.Compose([
|
| 50 |
transforms.Resize(32),
|
| 51 |
transforms.ToTensor(),
|
| 52 |
-
transforms.Normalize(
|
| 53 |
])
|
| 54 |
|
| 55 |
-
# ===
|
| 56 |
-
test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.Compose([
|
| 57 |
-
transforms.ToTensor(),
|
| 58 |
-
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
|
| 59 |
-
]))
|
| 60 |
-
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
|
| 61 |
-
|
| 62 |
-
# === Inference Function (single image) ===
|
| 63 |
def inference(input_image: Image.Image):
|
| 64 |
if model.training:
|
| 65 |
model.eval()
|
|
@@ -70,106 +55,39 @@ def inference(input_image: Image.Image):
|
|
| 70 |
confidences = {class_labels[i]: float(probabilities[0,i]) for i in range(len(class_labels))}
|
| 71 |
return confidences
|
| 72 |
|
| 73 |
-
# ===
|
| 74 |
-
def
|
| 75 |
-
|
| 76 |
-
return "Model missing. Run training first.", {}, None, None
|
| 77 |
-
|
| 78 |
-
# Load weights fresh to avoid any accidental state drift
|
| 79 |
-
local_model = SimpleCNN()
|
| 80 |
-
local_model.load_state_dict(torch.load(DCLR_MODEL_PATH, map_location=torch.device('cpu')))
|
| 81 |
-
local_model.eval()
|
| 82 |
-
|
| 83 |
-
correct = 0
|
| 84 |
-
total = 0
|
| 85 |
-
class_correct = np.zeros(10)
|
| 86 |
-
class_total = np.zeros(10)
|
| 87 |
-
|
| 88 |
-
with torch.no_grad():
|
| 89 |
-
for inputs, labels in test_loader:
|
| 90 |
-
outputs = local_model(inputs)
|
| 91 |
-
_, predicted = outputs.max(1)
|
| 92 |
-
total += labels.size(0)
|
| 93 |
-
correct += predicted.eq(labels).sum().item()
|
| 94 |
-
c = (predicted == labels).squeeze()
|
| 95 |
-
for i in range(len(labels)):
|
| 96 |
-
label = labels[i].item()
|
| 97 |
-
class_correct[label] += c[i].item()
|
| 98 |
-
class_total[label] += 1
|
| 99 |
-
|
| 100 |
-
overall_acc = round(100.0 * correct / total, 2)
|
| 101 |
-
classwise_acc = {class_labels[i]: round(100.0 * class_correct[i] / class_total[i], 2) for i in range(10)}
|
| 102 |
-
|
| 103 |
-
perf_plot = DCLR_PERF_PNG if os.path.exists(DCLR_PERF_PNG) else None
|
| 104 |
-
acc_plot = DCLR_ACC_PNG if os.path.exists(DCLR_ACC_PNG) else None
|
| 105 |
-
|
| 106 |
-
return f"{overall_acc}%", classwise_acc, perf_plot, acc_plot
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
if os.path.exists(
|
| 111 |
-
with open(BENCHMARK_TXT, "r") as f:
|
| 112 |
-
return f.read()
|
| 113 |
-
return "No benchmark_results.txt found. Please run train_dclr_model.py to generate real numbers."
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
os.
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
raw_test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
|
| 121 |
-
|
| 122 |
-
example_images = []
|
| 123 |
-
seen_classes = set()
|
| 124 |
-
for idx in range(len(raw_test_set)):
|
| 125 |
-
img, label = raw_test_set[idx]
|
| 126 |
-
if label not in seen_classes:
|
| 127 |
-
pil_img = transform_gallery(img)
|
| 128 |
-
file_path = os.path.join(sample_dir, f"example_{class_labels[label]}.png")
|
| 129 |
-
pil_img.save(file_path)
|
| 130 |
-
example_images.append([file_path, f"Sample {class_labels[label]}"])
|
| 131 |
-
seen_classes.add(label)
|
| 132 |
-
if len(seen_classes) == 10:
|
| 133 |
-
break
|
| 134 |
|
| 135 |
# === Gradio Interface Setup ===
|
| 136 |
-
|
| 137 |
-
gr.Markdown("# DCLR Optimiser — CIFAR-10 Artifact Viewer")
|
| 138 |
-
gr.Markdown("Upload an image for prediction, or use Benchmark tabs for real test results. All numbers are computed from CIFAR-10 runs and saved as reproducible artifacts.")
|
| 139 |
-
|
| 140 |
-
with gr.Tab("Single Image Inference (DCLR)"):
|
| 141 |
-
inp = gr.Image(type='pil', label='Upload Image (32x32 assumed)')
|
| 142 |
-
out = gr.Label(num_top_classes=3, label='Predictions')
|
| 143 |
-
perf_img = gr.Image(type='filepath', label='DCLR Training Performance', value=DCLR_PERF_PNG if os.path.exists(DCLR_PERF_PNG) else None)
|
| 144 |
-
acc_img = gr.Image(type='filepath', label='DCLR Final Test Accuracy Plot', value=DCLR_ACC_PNG if os.path.exists(DCLR_ACC_PNG) else None)
|
| 145 |
-
acc_text = gr.Textbox(label='DCLR Final Test Accuracy')
|
| 146 |
-
# If the accuracy text file exists, load it at UI init
|
| 147 |
-
if os.path.exists(DCLR_ACC_TXT):
|
| 148 |
-
with open(DCLR_ACC_TXT, "r") as f:
|
| 149 |
-
acc_text.value = f"Final Test Accuracy: {f.read().strip()}%"
|
| 150 |
-
# Hook
|
| 151 |
-
inp.change(fn=inference, inputs=inp, outputs=out)
|
| 152 |
-
|
| 153 |
-
gr.Examples(
|
| 154 |
-
examples=example_images,
|
| 155 |
-
inputs=inp,
|
| 156 |
-
label="CIFAR-10 Samples (one per class)"
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
with gr.Tab("Benchmark Mode (DCLR real-time)"):
|
| 160 |
-
btn = gr.Button("Run DCLR Benchmark on CIFAR-10 Test Set")
|
| 161 |
-
overall = gr.Textbox(label="Overall Test Accuracy (DCLR)")
|
| 162 |
-
classwise = gr.JSON(label="Per-Class Accuracy (%) (DCLR)")
|
| 163 |
-
perf_plot = gr.Image(type='filepath', label='DCLR Training Performance')
|
| 164 |
-
acc_plot = gr.Image(type='filepath', label='DCLR Final Test Accuracy Plot')
|
| 165 |
-
|
| 166 |
-
btn.click(fn=benchmark_dclr_realtime, inputs=None, outputs=[overall, classwise, perf_plot, acc_plot])
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
if __name__ == '__main__':
|
| 175 |
-
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchvision.transforms as transforms
|
|
|
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from PIL import Image
|
| 6 |
import gradio as gr
|
| 7 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# === Simple CNN Model Definition ===
|
| 10 |
class SimpleCNN(nn.Module):
|
|
|
|
| 23 |
x = F.relu(self.fc1(x))
|
| 24 |
return self.fc2(x)
|
| 25 |
|
| 26 |
+
# === Model Loading ===
|
| 27 |
model = SimpleCNN()
|
| 28 |
+
model_path = 'simple_cnn_dclr_tuned.pth'
|
| 29 |
+
|
| 30 |
+
if os.path.exists(model_path):
|
| 31 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 32 |
model.eval()
|
| 33 |
+
print(f"Model loaded successfully from {model_path}")
|
| 34 |
else:
|
| 35 |
+
print(f"Warning: Model file '{model_path}' not found. Please run train_dclr_model.py first.")
|
| 36 |
|
| 37 |
# === CIFAR-10 Class Labels ===
|
| 38 |
class_labels = ['plane','car','bird','cat','deer','dog','frog','horse','ship','truck']
|
| 39 |
|
| 40 |
+
# === Image Preprocessing ===
|
| 41 |
preprocess = transforms.Compose([
|
| 42 |
transforms.Resize(32),
|
| 43 |
transforms.ToTensor(),
|
| 44 |
+
transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225])
|
| 45 |
])
|
| 46 |
|
| 47 |
+
# === Inference Function ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def inference(input_image: Image.Image):
|
| 49 |
if model.training:
|
| 50 |
model.eval()
|
|
|
|
| 55 |
confidences = {class_labels[i]: float(probabilities[0,i]) for i in range(len(class_labels))}
|
| 56 |
return confidences
|
| 57 |
|
| 58 |
+
# === Results Viewer Function ===
|
| 59 |
+
def show_results(input_image: Image.Image):
|
| 60 |
+
preds = inference(input_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Load plots if they exist
|
| 63 |
+
perf_plot = "training_performance.png" if os.path.exists("training_performance.png") else None
|
| 64 |
+
acc_plot = "final_test_accuracy.png" if os.path.exists("final_test_accuracy.png") else None
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
# Load final test accuracy number
|
| 67 |
+
test_acc_text = "Final test accuracy not available."
|
| 68 |
+
if os.path.exists("final_test_accuracy.txt"):
|
| 69 |
+
with open("final_test_accuracy.txt", "r") as f:
|
| 70 |
+
test_acc_value = f.read().strip()
|
| 71 |
+
test_acc_text = f"Final Test Accuracy: {test_acc_value}%"
|
| 72 |
|
| 73 |
+
return preds, perf_plot, acc_plot, test_acc_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# === Gradio Interface Setup ===
|
| 76 |
+
example_images = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
interface = gr.Interface(
|
| 79 |
+
fn=show_results,
|
| 80 |
+
inputs=gr.Image(type='pil', label='Upload Image'),
|
| 81 |
+
outputs=[
|
| 82 |
+
gr.Label(num_top_classes=3, label='Predictions'),
|
| 83 |
+
gr.Image(type='filepath', label='Training Performance'),
|
| 84 |
+
gr.Image(type='filepath', label='Final Test Accuracy Plot'),
|
| 85 |
+
gr.Textbox(label='Final Test Accuracy')
|
| 86 |
+
],
|
| 87 |
+
title='CIFAR-10 Image Classification with DCLR Optimizer',
|
| 88 |
+
description='Upload an image to see predictions. Training/test plots and accuracy show benchmark results on CIFAR-10.',
|
| 89 |
+
examples=example_images
|
| 90 |
+
)
|
| 91 |
|
| 92 |
if __name__ == '__main__':
|
| 93 |
+
interface.launch()
|