BILLY12138
commited on
Commit
•
b7362f5
1
Parent(s):
1ac192a
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,216 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
pipe = pipe.to(device)
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
}
|
51 |
-
"""
|
52 |
|
53 |
if torch.cuda.is_available():
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
|
4 |
+
from tdd_scheduler import TDDScheduler
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
|
9 |
+
SAFETY_CHECKER = False
|
10 |
|
11 |
+
loaded_acc = None
|
12 |
+
device = "cuda"
|
13 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
ACC_lora={
|
16 |
+
"TDD":"RED-AIGC/TDD/sdxl_tdd_wo_adv_lora.safetensors",
|
17 |
+
"TDD_adv":"RED-AIGC/TDD/sdxl_tdd_lora_weights.safetensors",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
|
|
19 |
|
20 |
if torch.cuda.is_available():
|
21 |
+
base1 = UNet2DConditionModel.from_pretrained(
|
22 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
|
23 |
+
).to(device)
|
24 |
+
base2 = UNet2DConditionModel.from_pretrained(
|
25 |
+
"frankjoshua/realvisxlV40_v40Bakedvae", subfolder="unet", torch_dtype=torch.float16
|
26 |
+
).to(device)
|
27 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
28 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
29 |
+
unet=base1,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
variant="fp16",
|
32 |
+
).to(device)
|
33 |
|
34 |
+
tdd_lora = load_file(ACC_lora["TDD"])
|
35 |
+
tdd_adv_lora = ACC_lora["TDD_adv"]
|
36 |
+
pipe_sdxl.load_lora_weights(tdd_lora, adapter_name="TDD")
|
37 |
+
pipe_sdxl.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
|
38 |
+
pipe_sdxl.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)
|
39 |
+
|
40 |
+
pipe_sdxl_real = StableDiffusionXLPipeline.from_pretrained(
|
41 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
42 |
+
unet=base2,
|
43 |
+
torch_dtype=torch.float16,
|
44 |
+
variant="fp16",
|
45 |
+
).to(device)
|
46 |
+
pipe_sdxl_real.load_lora_weights(tdd_lora, adapter_name="TDD")
|
47 |
+
pipe_sdxl_real.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
|
48 |
+
pipe_sdxl_real.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)
|
49 |
+
|
50 |
+
def update_base_model(ckpt):
|
51 |
+
if torch.cuda.is_available():
|
52 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
53 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
54 |
+
torch_dtype=torch.float16,
|
55 |
+
variant="fp16",
|
56 |
+
).to(device)
|
57 |
+
return pipe_sdxl
|
58 |
+
|
59 |
+
|
60 |
+
if SAFETY_CHECKER:
|
61 |
+
from safety_checker import StableDiffusionSafetyChecker
|
62 |
+
from transformers import CLIPFeatureExtractor
|
63 |
+
|
64 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
65 |
+
"CompVis/stable-diffusion-safety-checker"
|
66 |
+
).to(device)
|
67 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
68 |
+
"openai/clip-vit-base-patch32"
|
69 |
+
)
|
70 |
+
|
71 |
+
def check_nsfw_images(
|
72 |
+
images: list[Image.Image],
|
73 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
74 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
|
75 |
+
has_nsfw_concepts = safety_checker(
|
76 |
+
images=[images], clip_input=safety_checker_input.pixel_values.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
)
|
78 |
|
79 |
+
return images, has_nsfw_concepts
|
80 |
+
|
81 |
+
|
82 |
+
@spaces.GPU(enable_queue=True)
|
83 |
+
def generate_image(
|
84 |
+
prompt,
|
85 |
+
negative_prompt,
|
86 |
+
ckpt,
|
87 |
+
acc,
|
88 |
+
num_inference_steps,
|
89 |
+
guidance_scale,
|
90 |
+
eta,
|
91 |
+
seed,
|
92 |
+
progress=gr.Progress(track_tqdm=True),
|
93 |
+
):
|
94 |
+
global loaded_acc
|
95 |
+
#pipe = pipe_sdxl #if mode == "sdxl" else pipe_sd15
|
96 |
+
|
97 |
+
if ckpt == "Real":
|
98 |
+
pipe = pipe_sdxl_real
|
99 |
+
else:
|
100 |
+
pipe = pipe_sdxl
|
101 |
+
|
102 |
+
if loaded_acc != acc:
|
103 |
+
#pipe.load_lora_weights(ACC_lora[acc], adapter_name=acc)
|
104 |
+
pipe.set_adapters([acc], adapter_weights=[1.0])
|
105 |
+
print(pipe.get_active_adapters())
|
106 |
+
loaded_acc = acc
|
107 |
+
|
108 |
+
results = pipe(
|
109 |
+
prompt=prompt,
|
110 |
+
negative_prompt=negative_prompt,
|
111 |
+
num_inference_steps=num_inference_steps,
|
112 |
+
guidance_scale=guidance_scale,
|
113 |
+
eta=eta,
|
114 |
+
generator=torch.Generator(device=pipe.device).manual_seed(seed),
|
115 |
+
)
|
116 |
+
|
117 |
+
if SAFETY_CHECKER:
|
118 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
119 |
+
if any(has_nsfw_concepts):
|
120 |
+
gr.Warning("NSFW content detected.")
|
121 |
+
return Image.new("RGB", (512, 512))
|
122 |
+
return images[0]
|
123 |
+
return results.images[0]
|
124 |
+
|
125 |
+
css = """
|
126 |
+
h1 {
|
127 |
+
text-align: center;
|
128 |
+
display:block;
|
129 |
+
}
|
130 |
+
.gradio-container {
|
131 |
+
max-width: 70.5rem !important;
|
132 |
+
}
|
133 |
+
"""
|
134 |
+
|
135 |
+
with gr.Blocks(css=css) as demo:
|
136 |
+
gr.Markdown(
|
137 |
+
"""
|
138 |
+
# ✨Target-Driven Distillation✨
|
139 |
+
|
140 |
+
Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.
|
141 |
+
|
142 |
+
[![arXiv](https://img.shields.io/badge/arXiv-coming%20soon-b31b1b.svg?logo=arxiv)](https://arxiv.org) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/RedAIGC/TDD)
|
143 |
+
"""
|
144 |
+
)
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column(scale=1):
|
147 |
+
with gr.Group():
|
148 |
+
with gr.Row():
|
149 |
+
prompt = gr.Textbox(label="Prompt")
|
150 |
+
with gr.Row():
|
151 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
152 |
+
with gr.Row():
|
153 |
+
steps = gr.Slider(
|
154 |
+
label="Sampling Steps",
|
155 |
+
minimum=4,
|
156 |
+
maximum=8,
|
157 |
+
step=1,
|
158 |
+
value=4,
|
159 |
+
)
|
160 |
+
with gr.Row():
|
161 |
+
guidance_scale = gr.Slider(
|
162 |
+
label="CFG Scale",
|
163 |
+
minimum=1,
|
164 |
+
maximum=4,
|
165 |
+
step=0.1,
|
166 |
+
value=2.0,
|
167 |
+
)
|
168 |
+
with gr.Row():
|
169 |
+
eta = gr.Slider(
|
170 |
+
label="eta",
|
171 |
+
minimum=0,
|
172 |
+
maximum=0.3,
|
173 |
+
step=0.1,
|
174 |
+
value=0.2,
|
175 |
+
)
|
176 |
+
with gr.Row():
|
177 |
+
seed = gr.Number(label="Seed", value=-1)
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
|
181 |
+
ckpt = gr.Dropdown(
|
182 |
+
label="Base Model",
|
183 |
+
choices=["SDXL-1.0", "Real"],
|
184 |
+
value="SDXL-1.0",
|
185 |
+
)
|
186 |
+
|
187 |
+
acc = gr.Dropdown(
|
188 |
+
label="Accelerate Lora",
|
189 |
+
choices=["TDD", "TDD_adv"],
|
190 |
+
value="TDD_adv",
|
191 |
+
)
|
192 |
+
|
193 |
+
with gr.Column(scale=1):
|
194 |
+
with gr.Group():
|
195 |
+
img = gr.Image(label="TDD Image", value="/share/wangcunzheng/test1.png")
|
196 |
+
submit_sdxl = gr.Button("Run on SDXL")
|
197 |
+
gr.Examples(
|
198 |
+
examples=[
|
199 |
+
["A photo of a cat made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],
|
200 |
+
["A photo of a dog made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],
|
201 |
+
|
202 |
+
],
|
203 |
+
inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
|
204 |
+
outputs=[img],
|
205 |
+
fn=generate_image,
|
206 |
+
cache_examples="lazy",
|
207 |
+
)
|
208 |
+
|
209 |
+
gr.on(
|
210 |
+
fn=generate_image,
|
211 |
+
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
212 |
+
inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
|
213 |
+
outputs=[img],
|
214 |
)
|
215 |
|
216 |
+
demo.queue(api_open=False).launch(show_api=False)
|