jychen0828 commited on
Commit
f66e410
·
verified ·
1 Parent(s): 75fdee1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -6
app.py CHANGED
@@ -16,7 +16,7 @@ import torch
16
  from diffusers import FluxPipeline
17
 
18
  torch.backends.cuda.matmul.allow_tf32 = True
19
-
20
  class timer:
21
  def __init__(self, method_name="timed process"):
22
  self.method = method_name
@@ -31,7 +31,7 @@ if not path.exists(cache_path):
31
  os.makedirs(cache_path, exist_ok=True)
32
 
33
  pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
- pipe.load_lora_weights(hf_hub_download("RED-AIGC/TDD", "FLUX.1-dev_tdd_lora_weights.safetensors"))
35
  pipe.fuse_lora(lora_scale=0.125)
36
  pipe.to("cuda")
37
 
@@ -80,14 +80,37 @@ with gr.Blocks(css=css) as demo:
80
  with gr.Row():
81
  steps = gr.Slider(label="Inference Steps", minimum=4, maximum=10, step=1, value=8)
82
  scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=3.5, step=0.1, value=2.0)
83
-
84
- seed = gr.Number(label="Seed", value=3420, precision=0)
 
 
 
 
 
 
85
 
86
  generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
87
 
88
  with gr.Column(scale=4):
89
  output = gr.Image(label="Your Generated Image")
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  gr.Markdown(
92
  """
93
  <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
@@ -103,8 +126,14 @@ with gr.Blocks(css=css) as demo:
103
  )
104
 
105
  @spaces.GPU
106
- def process_image(height, width, steps, scales, prompt, seed):
107
  global pipe
 
 
 
 
 
 
108
  with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
109
  return pipe(
110
  prompt=[prompt],
@@ -118,7 +147,7 @@ with gr.Blocks(css=css) as demo:
118
 
119
  generate_btn.click(
120
  process_image,
121
- inputs=[height, width, steps, scales, prompt, seed],
122
  outputs=output
123
  )
124
 
 
16
  from diffusers import FluxPipeline
17
 
18
  torch.backends.cuda.matmul.allow_tf32 = True
19
+ loaded_acc = None
20
  class timer:
21
  def __init__(self, method_name="timed process"):
22
  self.method = method_name
 
31
  os.makedirs(cache_path, exist_ok=True)
32
 
33
  pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
+ pipe.load_lora_weights(hf_hub_download("RED-AIGC/TDD", "FLUX.1-dev_tdd_lora_weights.safetensors"),adapter_name="TDD")
35
  pipe.fuse_lora(lora_scale=0.125)
36
  pipe.to("cuda")
37
 
 
80
  with gr.Row():
81
  steps = gr.Slider(label="Inference Steps", minimum=4, maximum=10, step=1, value=8)
82
  scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=3.5, step=0.1, value=2.0)
83
+ with gr.Row():
84
+ seed = gr.Number(label="Seed", value=3420, precision=0)
85
+ with gr.Row():
86
+ acc = gr.Dropdown(
87
+ label="Accelerate Lora",
88
+ choices=["TDD", "TDD_adv"],
89
+ value="TDD",
90
+ )
91
 
92
  generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
93
 
94
  with gr.Column(scale=4):
95
  output = gr.Image(label="Your Generated Image")
96
 
97
+ person="Portrait of a girl, high-end photography, prominent facial details, significant depth of field, soft lighting, late afternoon sun, in the style of Richard Avedon, Henri Cartier-Bresson, and Yousuf Karsh. Golden ratio composition, exquisite detail, Hasselblad H6D-100c, featured on the cover of photography magazines."
98
+ dog="Portrait photo of a Shiba Inu, photograph, highly detailed fur, warm and cheerful light, soft pastel tones, vibrant and sunny atmosphere, style by Tim Flach, bright daylight, natural setting, centered, extremely detailed, Nikon D850, award-winning photography"
99
+ # scenery="A high-detail shot of the sea and sky, capturing the vibrant blues and crisp sunlight. Shot with a Canon 5D Mark IV, award-winning photography."
100
+ scenery="Capture the golden hour's warm embrace on a sandy beach with a Nikon D850, highlighting the vibrant blues and the soft, golden sunlight. This award-winning photography captures the essence of a summer sunset by the coast."
101
+ gr.Examples(
102
+ examples=[
103
+ [person, "TDD", 1024, 1024, 8, 2, 8888],
104
+ [dog, "TDD", 1024, 1024, 6, 2, 29],
105
+ [scenery, "TDD", 1024, 1024, 6, 2.2, 3777],
106
+ ],
107
+ # inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
108
+ inputs=[prompt,acc, height, width, steps, scales, seed],
109
+ outputs=output,
110
+ fn=process_image,
111
+ cache_examples="lazy",
112
+ )
113
+
114
  gr.Markdown(
115
  """
116
  <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
 
126
  )
127
 
128
  @spaces.GPU
129
+ def process_image(prompt,acc,height, width, steps, scales, seed):
130
  global pipe
131
+ global loaded_acc
132
+ if loaded_acc != acc:
133
+ #pipe.load_lora_weights(ACC_lora[acc], adapter_name=acc)
134
+ pipe.set_adapters([acc], adapter_weights=[1.0])
135
+ print(pipe.get_active_adapters())
136
+ loaded_acc = acc
137
  with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
138
  return pipe(
139
  prompt=[prompt],
 
147
 
148
  generate_btn.click(
149
  process_image,
150
+ inputs=[prompt, acc,height, width, steps, scales, seed],
151
  outputs=output
152
  )
153