REALME5-pro commited on
Commit
7271724
·
verified ·
1 Parent(s): 0ccf754

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -50
app.py CHANGED
@@ -1,5 +1,5 @@
1
  from fastai.text.all import *
2
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, BlenderbotForConditionalGeneration, BlenderbotTokenizer
3
  import torch
4
  import gradio as gr
5
 
@@ -31,27 +31,6 @@ def classify_psychiatric_text(txt):
31
  probabilities = torch.softmax(logits, dim=1).squeeze().tolist()
32
  return dict(zip(psychiatric_labels, probabilities))
33
 
34
- # # Load BlenderBot for Lifestyle and Nutrition Chatbot
35
- # blender_model_name = "facebook/blenderbot-3B" # Pre-trained BlenderBot 3B model
36
- # blender_tokenizer = BlenderbotTokenizer.from_pretrained(blender_model_name)
37
- # blender_model = BlenderbotForConditionalGeneration.from_pretrained(blender_model_name)
38
-
39
- # Chat function for Lifestyle and Nutrition
40
- chat_history = []
41
-
42
- # def chatbot_response(user_input):
43
- # global chat_history
44
- # new_input_ids = blender_tokenizer.encode(user_input + blender_tokenizer.eos_token, return_tensors='pt')
45
- # bot_input_ids = torch.cat([chat_history, new_input_ids], dim=-1) if chat_history else new_input_ids
46
- # chat_history = blender_model.generate(bot_input_ids, max_length=1000, pad_token_id=blender_tokenizer.eos_token_id)
47
- # response = blender_tokenizer.decode(chat_history[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
48
- # return response
49
-
50
- # def clear_chat():
51
- # global chat_history
52
- # chat_history = []
53
- # return []
54
-
55
  # Gradio Interfaces
56
  medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail')
57
  medical_label = gr.Label()
@@ -61,28 +40,6 @@ psychiatric_text = gr.Textbox(lines=2, label='Describe your mental health concer
61
  psychiatric_label = gr.Label()
62
  psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.']
63
 
64
- lifestyle_chatbot = gr.Chatbot(label="Chat with me about diet and nutrition!")
65
- lifestyle_msg = gr.Textbox(placeholder="Ask your question here...", label="Your Question")
66
- lifestyle_clear = gr.Button("Clear Chat")
67
-
68
- def user_message(input_text):
69
- if not input_text.strip():
70
- return lifestyle_chatbot, "Please enter a question."
71
- response = chatbot_response(input_text)
72
- lifestyle_chatbot.append((input_text, response))
73
- return lifestyle_chatbot, ""
74
-
75
- # Lifestyle & Nutrition Interface
76
- lifestyle_interface = gr.Interface(
77
- fn=user_message,
78
- inputs=[lifestyle_msg],
79
- outputs=[lifestyle_chatbot, lifestyle_msg],
80
- live=True,
81
- title="Nutritionist Chatbot",
82
- description="Ask me anything about diet, food, and nutrition!"
83
- )
84
-
85
- # Medical Diagnosis Interface
86
  medical_interface = gr.Interface(
87
  fn=classify_medical_text,
88
  inputs=medical_text,
@@ -91,7 +48,6 @@ medical_interface = gr.Interface(
91
  description=medical_description,
92
  )
93
 
94
- # Psychiatric Analysis Interface
95
  psychiatric_interface = gr.Interface(
96
  fn=classify_psychiatric_text,
97
  inputs=psychiatric_text,
@@ -101,9 +57,5 @@ psychiatric_interface = gr.Interface(
101
  )
102
 
103
  # Combine interfaces using Tabs
104
- app = gr.TabbedInterface(
105
- [medical_interface, psychiatric_interface, lifestyle_interface],
106
- ["Medical Diagnosis", "Psychiatric Analysis", "Lifestyle & Nutrition Chat"]
107
- )
108
-
109
  app.launch(inline=False)
 
1
  from fastai.text.all import *
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
  import gradio as gr
5
 
 
31
  probabilities = torch.softmax(logits, dim=1).squeeze().tolist()
32
  return dict(zip(psychiatric_labels, probabilities))
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  # Gradio Interfaces
35
  medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail')
36
  medical_label = gr.Label()
 
40
  psychiatric_label = gr.Label()
41
  psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.']
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  medical_interface = gr.Interface(
44
  fn=classify_medical_text,
45
  inputs=medical_text,
 
48
  description=medical_description,
49
  )
50
 
 
51
  psychiatric_interface = gr.Interface(
52
  fn=classify_psychiatric_text,
53
  inputs=psychiatric_text,
 
57
  )
58
 
59
  # Combine interfaces using Tabs
60
+ app = gr.TabbedInterface([medical_interface, psychiatric_interface], ["Medical Diagnosis", "Psychiatric Analysis"])
 
 
 
 
61
  app.launch(inline=False)