Spaces:
Runtime error
Runtime error
from ragatouille import RAGPretrainedModel | |
import subprocess | |
import json | |
import firebase_admin | |
from firebase_admin import credentials, firestore | |
import logging | |
from pathlib import Path | |
from time import perf_counter | |
from datetime import datetime | |
import gradio as gr | |
from jinja2 import Environment, FileSystemLoader | |
import numpy as np | |
from sentence_transformers import CrossEncoder | |
from backend.query_llm import generate_hf, generate_openai | |
from backend.semantic_search import table, retriever | |
VECTOR_COLUMN_NAME = "vector" | |
TEXT_COLUMN_NAME = "text" | |
proj_dir = Path(__file__).parent | |
# Setting up the logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Set up the template environment with the templates directory | |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# Load the templates directly from the environment | |
template = env.get_template('template.j2') | |
template_html = env.get_template('template_html.j2') | |
service_account_key='firebase.json' | |
# Create a Certificate object from the service account info | |
cred = credentials.Certificate(service_account_key) | |
# Initialize the Firebase Admin | |
firebase_admin.initialize_app(cred) | |
# # Create a reference to the Firestore database | |
db = firestore.client() | |
# Examples | |
examples = ['when i have to report to constituency?','what is social media and what are rules related to it for expenditure monitoring ', | |
'how many reports to be submitted by Expenditure observer with annexure names ?','what is expenditure limits for parlimentary constituency and assembly constituency' | |
] | |
#db usage | |
collection_name = 'Nirvachana' # Replace with your collection name | |
field_name = 'message_count' # Replace with your field name for count | |
def get_and_increment_value_count(db , collection_name, field_name): | |
""" | |
Retrieves a value count from the specified Firestore collection and field, | |
increments it by 1, and updates the field with the new value.""" | |
collection_ref = db.collection(collection_name) | |
doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count | |
# Use a transaction to ensure consistency across reads and writes | |
try: | |
with db.transaction() as transaction: | |
# Get the current value count (or initialize to 0 if it doesn't exist) | |
current_count_doc = doc_ref.get() | |
current_count_data = current_count_doc.to_dict() | |
if current_count_data: | |
current_count = current_count_data.get(field_name, 0) | |
else: | |
current_count = 0 | |
# Increment the count | |
new_count = current_count + 1 | |
# Update the document with the new count | |
transaction.set(doc_ref, {field_name: new_count}) | |
return new_count | |
except Exception as e: | |
print(f"Error retrieving and updating value count: {e}") | |
return None # Indicate error | |
def update_count_html(): | |
usage_count = get_and_increment_value_count(db ,collection_name, field_name) | |
ccount_html = gr.HTML(value=f""" | |
<div style="display: flex; justify-content: flex-end;"> | |
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
</div> | |
""") | |
return count_html | |
def store_message(db,query,answer,cross_encoder): | |
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
# Create a new document reference with a dynamic document name based on timestamp | |
new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") | |
new_completion.set({ | |
'query': query, | |
'answer':answer, | |
'created_time': firestore.SERVER_TIMESTAMP, | |
'embedding': cross_encoder, | |
'title': 'Expenditure observer bot' | |
}) | |
def add_text(history, text): | |
history = [] if history is None else history | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
def bot(history, cross_encoder): | |
top_rerank = 15 | |
top_k_rank = 10 | |
query = history[-1][0] | |
if not query: | |
gr.Warning("Please submit a non-empty string as a prompt") | |
raise ValueError("Empty string was submitted") | |
logger.warning('Retrieving documents...') | |
# if COLBERT RAGATATOUILLE PROCEDURE : | |
if cross_encoder=='(HIGH ACCURATE) ColBERT': | |
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
documents_full=RAG_db.search(query,k=top_k_rank) | |
documents=[item['content'] for item in documents_full] | |
# Create Prompt | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
print('Final history is ',history) | |
yield history, prompt_html | |
store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
else: | |
# Retrieve documents relevant to query | |
document_start = perf_counter() | |
query_vec = retriever.encode(query) | |
logger.warning(f'Finished query vec') | |
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
logger.warning(f'Finished search') | |
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
logger.warning(f'start cross encoder {len(documents)}') | |
# Retrieve documents relevant to query | |
query_doc_pair = [[query, doc] for doc in documents] | |
if cross_encoder=='(FAST) MiniLM-L6v2' : | |
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
elif cross_encoder=='(ACCURATE) BGE reranker': | |
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
cross_scores = cross_encoder1.predict(query_doc_pair) | |
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
logger.warning(f'Finished cross encoder {len(documents)}') | |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
logger.warning(f'num documents {len(documents)}') | |
document_time = perf_counter() - document_start | |
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
# Create Prompt | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
print('Final history is ',history) | |
yield history, prompt_html | |
store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: | |
gr.HTML(value="""<div styleCHEERFULL CBSE- <span style="color: #008000">AI Assisted Fun Learning</span></h1> | |
<img src='logo.png' alt="Chatbot" width="50" height="50" /> | |
</div>""",elem_id='heading') | |
gr.HTML(value=f""" | |
<p style="font-family: sans-serif; font-size: 16px;"> | |
A free chat bot assistant for Expenditure Observers on Compendium on Election Expenditure Monitoring using Open source LLMs. <br> | |
The bot can answer questions in natural language, taking relevant extracts from the ECI document which can be accessed <a href="https://www.eci.gov.in/eci-backend/public/api/download?url=LMAhAK6sOPBp%2FNFF0iRfXbEB1EVSLT41NNLRjYNJJP1KivrUxbfqkDatmHy12e%2Fzk1vx4ptJpQsKYHA87guoLjnPUWtHeZgKtEqs%2FyzfTTYIC0newOHHOjl1rl0u3mJBSIq%2Fi7zDsrcP74v%2FKr8UNw%3D%3D" style="color: #00008B; text-decoration: none;">CLICK HERE !</a>. | |
</p> | |
""", elem_id='Sub-heading') | |
usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by K M Ramyasri , PGT . Suggestions may be sent to <a href="mailto:mramesh.irs@gov.in" style="color: #00008B; font-style: italic;">mramesh.irs@gov.in</a>.</p>""", elem_id='Sub-heading1 ') | |
count_html = gr.HTML(value=f""" | |
<div style="display: flex; justify-content: flex-end;"> | |
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
</div> | |
""") | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
bubble_full_width=False, | |
show_copy_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
txt = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
txt_btn = gr.Button(value="Submit text", scale=1) | |
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") | |
prompt_html = gr.HTML() | |
# Turn off interactivity while generating if you click | |
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) | |
# Turn it back on | |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# Turn off interactivity while generating if you hit enter | |
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) | |
# Turn it back on | |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# Examples | |
gr.Examples(examples, txt) | |
demo.queue() | |
demo.launch(debug=True) | |